Zombies Are Our Friends
or: Why You Don’t Need (or Want) Opacity

Michael L. Scott

a0

(MELIORA]

& ROCHESTER

TRANSACT 2015 “lightning talk”



Zombie Transactions
(a.k.a. doomed or orphan)

" Have seen inconsistent state,
but haven’t noticed yet

— will not be able to commit

" Useful in real-world systems

— Casper et al. [aspLos 2011] (1.7x);
Kestor et al. [pacT 2011] (1.8-5.2x);

Dalessandro & Scott [pacT 2012];
IBM Blue Gene/Q;
lazy subscription

" Forbidden by opacity

(Guerraoui & Kapatka [PPoPP 2007])




Semantics & Levels
of Abstraction

= Different formalisms appropriate at different
levels

— language level: TSC for DRF programs

* no notion of aborted txns

— run-time level: TM API (start, read, write,
try-commit, ...)

— implementation level: conventional memory
model (e.g., C'11) (assuming building STM)

= Run-time level is where zombies matter
— not an issue above or below



Sequential Semantics for TM

Specify the meaning of sequential histories
(interleavings of the TM-relevant ops of your threads)

= API (start, read, write, try-commit,
)

= memory model: what can reads see?

= conflict function: which concurrent transactions
cannot both commit? (which give me permission
to become a zombie?)



Safety and Liveness

A TM implementation is correct if

1.

we can prove the fundamental theorem of TM:

every sequential history is equivalent to a serial history

. try-commit fails only in the presence of a conflicting txn
. read r in unsuccessful txn T is inconsistent w/ previous reads

only given a txn S whose prefix prior to r conflicts w/ T

. zombie execution is bounded (given any history prefix, if T

can run arbitrarily long w/out completing, it can do so
consistently)

. exceptions never escape an unsuccessful txn



Opacity v. SSTM

= Serializability & consistency

— fundamental in opacity — but behavior of
individual APl methods is unspecified

— flow from the memory model & conflict function in
SSTM — but every choice for these induces
different semantics, and requires a new proof of
the fundamental theorem

= Zombies
— forbidden in opacity

— allowed in SSTM: compiler’s responsibility to
validate when necessary — i.e., to sandbox



00
A

www.cs.rochester.edu/u/scott/papers/
2014 WTTM_zombies.pdf

Please read the position paper!

ROCHESTER



