
Performance Analysis of Concurrent
Red-Black Trees on HTM Platforms

Dimitrios Siakavaras, Konstantinos Nikas, Georgios Goumas and Nectarios Koziris
National Technical University of Athens

School of Electrical and Computer Engineering
Computing Systems Laboratory

{jimsiak,knikas,goumas,nkoziris}@cslab.ece.ntua.gr

Abstract
In this paper we analyze the performance of concurrent red-
black trees using two HTM implementations, Intel’s Trans-
actional Synchronization Extensions (TSX) on Haswell pro-
cessors and IBM’s Power8 HTM. We parallelize bottom-up
and top-down red-black trees using coarse-grained transac-
tions and evaluate their performance. Our experimental re-
sults show that HTM can outperform lock-based implemen-
tations with minimal programming effort. Furthermore, they
reveal that scalability depends on limits imposed by the un-
derlying hardware, indicating that a programmer needs to
take them into account in order to utilize HTM efficiently.

Keywords Hardware Transactional Memory, Concurrent
Data Structures, Red-Black Trees

1. Introduction
With the prevalence of multi-core systems, concurrent pro-
gramming has come to the forefront of software develop-
ment. When developing concurrent applications, a program-
mer needs to explicitly control the synchronization and com-
munication between multiple threads of execution. The most
common approach to synchronization is locking. By con-
trolling the granularity of locks, a programmer can trade-off
between performance and programmability. Coarse-grained
locking is simple to implement but can lead to serializa-
tion of accesses and thus loss of performance. On the other
hand, fine-grained locking enables more parallelism and thus
higher performance, but it is considerably harder to imple-
ment and much more error-prone. In general, locking ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TRANSACT ’15, June 15–16, 2015, Portland, Oregon, USA.
Copyright c⃝ 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

proaches suffer from subtle problems like priority inversion,
convoying, deadlock and lack of robustness. To avoid these
pitfalls, non-blocking algorithms have been proposed that
use hardware-supported atomic instructions (e.g. compare-
and-swap). However, non-blocking approaches are at least
as difficult to implement as fine-grained locking.

Transactional Memory (TM) [1] has emerged as an attrac-
tive alternative to lock-based and non-blocking approaches,
with particular focus on the ease of programming. A pro-
grammer needs only to annotate regions of code that must
be executed atomically, without worrying how the concur-
rent accesses to shared state should be synchronized. The
underlying TM system is then responsible for guaranteeing
correctness by aborting transactions that would lead to data
inconsistencies.

Until recently research on TM had focused mainly on
software solutions (STM) or simulated hardware. However,
the TM landscape has recently changed, as IBM and Intel
introduced Hardware TM (HTM) support in their proces-
sors [2–4], targeting HPC and commodity systems. In this
paper we evaluate the performance of a classic data struc-
ture, the Red-Black tree (RBT), when HTM is used for syn-
chronization. RBTs are an excellent example of a data struc-
ture that combines the following properties: a) It is widely
applicable, as it is contained in several industrial quality soft-
ware projects (Java, C++, Python, Linux kernel etc. [5]). b) It
has non-trivial properties, that bring up the challenges of
programmability both in the serial and, more importantly,
its concurrent versions. c) It can accommodate substantial
parallelism for a relevant analysis to be meaningful.

We implement and evaluate concurrent RBT versions in
two HTM implementations: Intel’s Transactional Synchro-
nization Extensions (TSX) provided on Haswell processors
and IBM’s Power8 HTM. We need to note that, based on
both our prior experimentation and Intel’s announcement in
Q3 2014, TSX is not guaranteed to work correctly. However,
we include the results of our performance analysis here, as
we anticipate that future systems with validated TSX results

will exhibit similar performance. Based on our experimental
results we draw several interesting conclusions:

1. A straightforward HTM RBT implementation with min-
imal programming effort can outperform lock-based im-
plementations.

2. Alternative concurrent RBT implementations can lead to
dramatically different scalability properties when HTM
comes into play.

3. The size of the RBT has significant impact on the perfor-
mance of HTM-based implementations.

The rest of this paper is organized as follows. Section 2
provides the necessary background information on RBTs.
In Section 3 we analyze each of three operations supported
by an RBT and the ways to synchronize them. Section 4
presents the characteristics of the two HTM implementa-
tions. Finally, the results of our experiments are presented
in Section 5 and we summarize our conclusions and direc-
tions for future work in Section 6.

2. Background
RBTs [6] are a class of height-balanced binary search trees
(BSTs). In addition to the properties of a BST, the following
must be satisfied by an RBT:

1. Every node is either red or black.

2. The root is black.

3. All leaves are black.

4. Every red node must have two black child nodes.

5. Every path from a given node to any of its descendant
leaves contains the same number of black nodes.

50

28 85

20

20 24

50 76 92

50

20 76

24 90NULL

NULL NULL NULL NULL

NULL

Figure 1. An example of an RBT in external and internal
format.

When the above properties are satisfied, the tree is guar-
anteed to have O(logn) height, where n is the total number
of nodes currently in the tree. It can be shown that the max-
imum path length from the root to a leaf node in an RBT
is at most twice as long as the minimum path length. Keep-
ing the tree balanced has the advantage of bounded traversal
time but introduces an additional overhead, both in terms
of performance when rebalancing operations are required,
and in terms of programming effort as one has to take care
of many different cases in which the tree properties are vi-
olated. RBTs are widely used to store key-value pairs and

20

15 24

20

15

2418

18

+18

(a) Insertion with no violation.

20

15 24

20

15

2418

18

+18

(b) Insertion creates red-red vi-
olation.

20

15 24

20

15

2418

18

-18

(c) Deletion with no violation.

20

15 22

18

18

-18

24

24

20

15

22

24

24

(-)

(d) Deletion creates double-black
violation (the (-) sign marks the
path of the tree that contains one
less black node).

Figure 2. Examples of insertion and deletion in external
RBT.

support the following operations: a) lookup to search for
a specific key, b) insert and c) delete to add and remove a
key-value pair from the tree respectively.

Depending on the way the key-value pairs are being
stored in the tree structure, RBTs are categorized as internal
and external. Internal trees store a key-value pair in every
node of the tree. On the other hand external trees store the
values only in the leaves while the internal nodes contain
only keys and are used solely for routing purposes. An ex-
ternal and an internal RBT containing 5 keys are shown in
Figure 1. We use square shapes to distinguish the leaves
from the internal nodes in the external tree. To remove a
node with two children from an internal RBT, we must first
find its successor (the leaf node with the greater key that is
less than the key of that node), swap their keys and delete
the successor leaf node. In a concurrent configuration this
operation requires that the deleting thread has exclusive ac-
cess to every node between these two nodes. To avoid such
complex situations we use external RBTs, where the node to
be deleted is always a leaf.

When inserting or deleting a node, some of the afore-
mentioned properties might be violated and actions must be
taken to restore them and rebalance the tree. The two pos-
sible violations are: a) red-red violation, when a red node
acquires a red child (violation of property 4) and b) double-
black violation, when a path of the tree contains one less
black node than the other paths (violation of property 5). Fig-
ure 2 illustrates possible scenarios when inserting or deleting
a node in an external RBT. Figures 2(b) and 2(d) depict the
cases when a violation is caused. To deal with these viola-
tions a number of node recolors and rotations are applied.

3. Concurrent RBTs
Three operations are supported by an RBT: lookup, insertion
and deletion. In this section we provide a brief overview of
each of the three operations and the different approaches for
synchronizing them using either locks or HTM.

3.1 Lookup
The lookup for a key in an RBT is performed in the same
way as in the conventional BST. Starting from the root of
the tree, a path of nodes is traversed until a leaf is reached. If
the key searched for is present in the tree, it will be contained
in the reached leaf.

In a concurrent implementation, to synchronize the lookup
operation with a fine-grained approach, the well known
hand-over-hand locking technique [7] can be used. Lock-
ing is performed at the granularity of an RBT node and at
each distinct step of the traversal, the lock of the next node
to be visited is acquired before the lock of the current node
is released.

On the other hand, when HTM is used, the lookup opera-
tion can be enclosed in a single transaction. It will be a read-
only transaction whose read-set consists of all the nodes in
the traversed path. Consequently, the size of the transaction’s
read-set is proportional to the length of the path and, for ex-
ternal RBTs, the height of the tree.

3.2 Insertion
The classic implementation of the insert operation of an RBT
[8] consists of two phases. The first one traverses the tree in
a top-down manner, i.e. from the root towards the leaves, and
locates the place where the new key is going to be inserted.
The second phase traverses the tree in a bottom-up manner,
i.e. from the leaf towards the root, performing recolors and
rotations to restore the RBT properties and rebalance the
tree. Whereas the top-down phase always reaches a leaf, the
bottom-up phase backtracks a number of times depending on
the violation (only in the worst case it shall reach the root of
the tree). This type of insertion is called bottom-up.

In concurrent implementations, parallel threads might tra-
verse the tree in opposite directions, thus complicating the
correct implementation using fine-grained locking. On the
other hand, when HTM is used, the insertion is enclosed in a
single transaction. Its read-set will contain all the nodes tra-
versed during the first top-down phase as well as a number
of additional nodes that are read during the bottom-up rebal-
ancing phase. Its write set includes all the nodes that have
been modified, either by recoloring or rotating, during the
rebalancing phase.

To enable fine-grained synchronization, top-down ap-
proaches have been proposed [6, 9], where the insertion is
performed in a single top-down phase. While traversing the
path from the root to the appropriate leaf, the necessary re-
colors and rotations are being applied, assuring that when the
new node is inserted no backtrack is necessary. Every step of

the top-down insertion can be viewed as a window operating
only on a small subtree. The pessimistic nature of this top-
down approach results in generally more tree modifications
compared to the bottom-up counterpart and consequently to
worse performance in serial executions.

Fine-grained locking can be applied in the top-down ap-
proach using the hand-over-hand locking technique. At each
step the nodes that consist the current window are locked and
they are released only after the nodes of the next window are
locked.

Unfortunately, HTM cannot be used in a similar manner.
As in the bottom-up version, a single transaction needs to
enclose the top-down insertion. Compared to its bottom-
up counterpart, this transaction will have larger read-set as
it will contain not only the nodes of the traversed path,
but additional nodes that have been examined during the
traversal. Furthermore, the write-set will contain nodes from
more levels of the tree due to the pessimistic nature of the
top-down operation.

3.3 Deletion
The delete operation of an RBT is basically similar to the
insertion. It too can be implemented as bottom-up or top-
down, allowing in the latter case the employment of fine-
grained locking.

3.4 Implementations
For our analysis we have implemented and evaluated four
concurrent RBTs. They are summarized in Table 1, catego-
rized by the synchronization method used and the way in-
sertions and deletions are implemented (bottom-up or top-
down).

Table 1. RBT implementations.
Bottom-up Top-down

Coarse-grained locking bu cg lock -

Fine-grained locking - td fg lock

HTM bu cg htm td cg htm

Coarse-grained locking versions are trivial to implement,
but they provide no parallelism as all the accesses on the
RBT are serialized. In our analysis we include only the
bottom-up, coarse-grained locking implementation as a ref-
erence point, as the top-down counterpart performs even
worse due to its pessimistic nature. Using fine-grained lock-
ing we implement a top-down version because, as explained
before, a bottom-up version is hard, if possible at all, to be
implemented.

Finally, using HTM, we implement both a bottom-up
and a top-down RBT. In general, bottom-up is expected
to employ smaller transactions than top-down and exhibit
less conflicts, as the pessimistic nature top-down approach
perform more node updates (recolors or rotations).

4. Hardware Transactional Memory
IBM and Intel have recently shipped processors with HTM
support, namely Power8 [3] and Haswell [2]. The basic TM
characteristics of these two implementations are similar:

• Data versioning: Both implementations use lazy version-
ing and all memory writes that are being performed in-
side a transaction become visible to other threads only
after the successful commit of the transaction.

• Best-effort: Both implementations are best-effort HTMs.
As no forward progress is guaranteed using only transac-
tional mode, a transaction may always fail to commit and
therefore a non-transactional fallback path is necessary.

• Conflict detection: Both TSX and Power8 HTM detect
conflicting operations in the granularity of a cache line.
Moreover, they both provide strong isolation, meaning
that a conflict is detected even if the conflicting access
occurs in non-transactional code.

In general, a transaction may fail to commit for various
reasons including:

• Conflict: When another thread executing in transactional
or non-transactional mode writes to a memory location
that has been added to the transaction’s read or write set.
While Power8 distinguishes between transactional and
non-transactional conflicts, Haswell just reports both as
conflicts.

• Capacity: When the transaction’s footprint has exceeded
a size limit imposed by the HTM implementation. Ta-
ble 2 presents the hardware transactional buffers’ sizes of
each HTM. It is evident that Haswell can support larger
transactions.

• Explicit: When the programmer explicitly aborts the
transaction. In our implementations we explicitly abort
transactions whenever the global lock that we use at the
fallback handler is checked and found to be taken.

Table 2. The size of the transactional buffers of the HTMs.

Haswell Power8

Read set 4MB 8KB

Write set 22KB 8KB

5. Experimental Evaluation
5.1 Experimental Setup
The main characteristics of the two systems used in our study
are shown in Table 3. In the Haswell machine we only em-
ploy the RTM mode of the HTM infrastructure. To demon-
strate the difference of single thread performance of the
two platforms, we execute the serial, bottom-up implemen-
tation for 3 different tree sizes. Table 4 presents the achieved
throughput in terms of operations per usec. The Haswell core

Table 3. The hardware characteristics of our platforms.
Name Haswell Power8

Processors 1 x Intel Core i7-4771 2 x Power8

Cores 4 2 x 10

Threads 8 160

Core clock 3.5 GHz 3.7 GHz

L1 (Data) 8-way, 32 KB, 64B block
size

8-way, 64 KB, 128B
block size

L2 8-way, 256 KB, 64B
block size 8-way, 512 KB,

L3 16-way, 8 MB, 64B
block size (shared)

8-way, 80 MB, 128B
block size (shared per

die)

Memory 16 GB 256 GB

Table 4. Single thread throughput (ops/usec).
Tree Size (Nodes) Haswell Power8

1K 11.82 6.82

1M 1.38 0.97

10M 0.86 0.53

outperforms Power8 by 42% to 73% depending on the size
of the tree.

All RBT versions were implemented in C and compiled
with GCC 4.9.1 with the -O3 optimization flag enabled. To
avoid false conflicts we pad each tree node to fit in one cache
line.

For the evaluation of our concurrent implementations we
vary two parameters:

• The size of the tree: We use 5 different tree sizes that
span from small (1K nodes, ≈250KB memory footprint)
to large (10M nodes, ≈2.5GB memory footprint) trees.
As the size of the tree increases, so does the length of the
traversed paths in the tree and consequently the execution
time per operation, as well as the size of the transactional
read and write sets of our HTM implementations.

• The mixture of operations: We use 3 different configu-
rations, where 80%, 50% and 20% of the operations re-
spectively are lookups in the tree, i.e. read-only travesals,
while the rest of the operations are equally divided be-
tween insertions and deletions.

For every run we execute 10 million operations equally
divided between concurrent threads. A warm-up phase is be-
ing performed in order to pre-populate the tree with half the
possible keys. This way we assure that the average execu-
tion time of each operation remains the same throughout the
whole execution. We pin threads to logical cores in such a
way that all the available physical cores are being employed
before utilizing hyperthreads or SMT contexts.

As both HTMs are best-effort, in order to guarantee for-
ward progress, our HTM implementations include a non-
transactional fallback path, in which, after a number of failed

1 2 3 4 8
Number of threads

0

1

2

3

4

5

6

7

8
Th

ro
ug

hp
ut

(o
ps

/u
se

c)
1M nodes (20-40-40)

bu-cg-lock
td-fg-lock
bu-cg-htm
td-cg-htm

(a) Haswell

1 2 3 4 5 10 20 40 60 80 100 120 140 160
Number of threads

0

1

2

3

4

5

6

7

8

Th
ro

ug
hp

ut
(o

ps
/u

se
c)

1M nodes (20-40-40)
bu-cg-lock
td-fg-lock
bu-cg-htm
td-cg-htm

(b) Power8

Figure 3. Throughput of HTM-based and lock-based concurrent versions for an RBT with 1M nodes.

1 2 3 4 8
Number of threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
(o

ps
/u

se
c)

4K nodes (20-40-40)
bu-cg-lock
td-fg-lock
bu-cg-htm
td-cg-htm

(a) Haswell

1 2 3 4 5 10 20 40 60 80 100 120 140 160
Number of threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
(o

ps
/u

se
c)

4K nodes (20-40-40)
bu-cg-lock
td-fg-lock
bu-cg-htm
td-cg-htm

(b) Power8

Figure 4. Throughput of HTM-based and lock-based concurrent versions for an RBT with 4K nodes.

transactions, a global lock is acquired, serializing all ac-
cesses on the RBT. When a transaction starts, the global lock
is read and if it is not free, an explicit abort is performed.
Adding the global lock in any transaction’s read set is neces-
sary to prohibit transactions from running concurrently with
the non-transactional path. When the global lock is acquired,
all running transactions fail due to the conflict on the global
lock. In our executions we retry each transaction 10 times
before resorting to the single global lock and serializing ac-
cesses.

5.2 HTM-based vs Lock-based
We first compare the HTM-based RBTs with their lock-
based counterparts. Figure 3 presents the throughput of the
four concurrent implementations for a tree with 1 million

nodes and a workload with only 20% of the operations being
lookups. Such a write-intensive workload is not ideal for
HTM as a large amount of conflicts is expected. As expected,
bu cg lock does not scale even for a low number of threads,
as all the accesses on the RBT are serialized. Moreover,
when threads are spread over multiple numa nodes (more
than 5 threads on Power8), a performance degradation is
observed, due to the coherence traffic imposed by reads and
writes on the shared global lock.

In contrast to the coarse-grained lock implementation,
td fg lock scales for up to 8 and 5 threads, on Haswell
and Power8 respectively. However, coherence traffic is again
high due to reads and writes on the locks of each node in the
tree, resulting in performance loss for more than 5 threads
on Power8.

1 2 3 4 8
Number of threads

0

1

2

3

4

5

6

7

8

9
Th

ro
ug

hp
ut

 (o
ps

/u
se

c)
1M nodes

bu_cg_htm(80/10/10)
bu_cg_htm(50/25/25)
bu_cg_htm(20/40/40)
td_cg_htm(80/10/10)
td_cg_htm(50/25/25)
td_cg_htm(20/40/40)

(a) Haswell

1 2 3 4 5 10 20 40 60 80 100 120 140 160
Number of threads

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (o

ps
/u

se
c)

1M nodes
bu_cg_htm(80/10/10)
bu_cg_htm(50/25/25)
bu_cg_htm(20/40/40)
td_cg_htm(80/10/10)
td_cg_htm(50/25/25)
td_cg_htm(20/40/40)

(b) Power8

Figure 5. Throughput of bottom-up and top-down HTM-based implementations for various workloads.

1 2 3 4 8
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f a
bo

rt
s

1e8

bo
tto

m
-u

p

to
p-

do
w

n

1M nodes (80-10-10)
explicit
capacity
conflict

(a) Haswell

1 2 3 4 5 10 20 40 80 160
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0
Nu

m
be

r o
f a

bo
rt

s
1e8

bo
tto

m
-u

p
to

p-
do

w
n

1M nodes (80-10-10)
explicit
capacity
non-transactional conflict
transactional conflict

(b) Power8

Figure 6. Aborts’ breakdown for bottom-up and top-down HTM-based implementations.

HTM-based implementations exhibit completely oppo-
site behaviors. bu cg htm scales for up to 20 threads and out-
performs the lock-based implementations offering around 11
and 15 times better throughput compared to the coarse and
fine-grained lock implementations respectively. On the other
hand, td cg htm does not scale and is even worse than the
lock-based implementations.

The 1M nodes tree provides a large number of different
paths on which threads can concurrently operate. It is thus a
tree that favors HTM in the sense that conflicts are expected
to be rare. Figure 4 depicts the throughput of our implemen-
tations for a smaller tree with 4K nodes, which is expected to
suffer from more conflicts. It is evident that bu cg htm still
performs better than the rest.

5.3 Bottom-up vs Top-down HTM
In this section we further analyze the performance of the
two HTM-based implementations. Figure 5 presents their
throughput for a tree with 1M nodes and various workloads.
For all the workloads, the bottom-up approach outperforms
the top-down one, achieving up to almost 4.5 and 17 times
better performance for 8 and 20 threads on Haswell and
Power8 respectively.

To offer an insight on the different performance of the two
approaches, Figure 6 depicts the number of aborts and their
breakdown for the 80-10-10 workload. It is obvious that the
top-down approach suffers significantly more aborts, which
hurt its performance. This is expected, as the top-down ap-
proach, due to its pessimistic nature, results in more tree re-
structures and thus more data conflicts. On the contrary, in

1 2 3 4 8
Number of threads

0

5

10

15

20

25

30

35

40

45
Th

ro
ug

hp
ut

 (o
ps

/u
se

c)
80-10-10

1K nodes
10K nodes
100K nodes
1M nodes
10M nodes

(a) Haswell

1 2 3 4 5 10 20 40 60 80 100 120 140 160
Number of threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (o

ps
/u

se
c)

80-10-10
1K nodes
10K nodes
100K nodes
1M nodes
10M nodes

(b) Power8

Figure 7. Throughput of bottom-up HTM-based implementation for various tree sizes.

20 40 60 80 100 120 140 160
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f a
bo

rt
s

1e8

bo
tto

m
-u

p
to

p-
do

w
n

1M nodes (80-10-10)

explicit
capacity
non-transactional conflict
transactional conflict

Figure 8. Aborts’ breakdown for bottom-up HTM in
Power8.

the bottom-up approach appear to be almost no data conflicts
for up to 20 threads on the Power8.

However, as threads keep increasing, performance dete-
riorates due to a significant rise of aborts. Figure 8 presents
the aborts’ breakdown for the bottom-up implementation for
20 threads or more for the Power8. It is evident that, as we
employ more SMT threads, capacity aborts increase, which
result in the threads acquiring the global lock more often in
order to perform their operations. This is illustrated by the
huge increase of non-transactional and explicit aborts.

5.4 HTM Limitations
To further investigate the impact of capacity limits on the
bottom-up approach, we evaluate its behavior for various
tree sizes and present the results in Figure 7. In Haswell,
even the largest tree with 10M nodes manages to scale for
up to 8 threads. This is due to the fact that Haswell provides

a larger transactional read buffer than Power8, as it utilizes
the L1 cache. At the same time, the resources are shared by
only two threads.

On the other hand, as the tree gets bigger we can effi-
ciently utilize fewer SMT threads for Power8. This can be
attributed to two reasons. First, as the tree size increases, so
does the transaction footprint, making it more possible for
a capacity abort to occur. Second, as SMT threads share the
transactional resources, the allowed size for a transaction ef-
fectively shrinks.

5.5 Global-lock fallback
As explained before, in order to ensure forward progress,
the threads acquire a global lock after a number of retries.
As aborts increase for high numbers of threads, so does the
possibility of a thread following the non-transactional path,
which in turn causes more aborts, which are illustrated in
Figures 6 and 8 as non-transactional and explicit aborts.

Figure 9 presents the achieved throughput together with
the percentage of operations completed with the lock ac-
quired for the bottom-up HTM-based implementation exe-
cuting a 80-10-10 workload on a tree with 1M nodes, while
varying the number of attempts to successfully complete a
transaction before acquiring the global lock. It is obvious
that as more threads share the transactional resources, the
number of retries must increase in order for a thread to suc-
ceed in executing its operation in transactional mode. How-
ever, there is a trade-off, as for a high number of retries the
threads spend their time retrying the same transaction again
and again, achieving no real progress and thus lowering their
throughput.

6. Conclusions and future work
In this paper we used two commodity HTM implementa-
tions, Intel’s TSX and IBM’s Power8 HTM, to implement

1 2 3 4 5 10 20 80 10
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

Number of retries

0

2

4

6

8

10

12
Th

ro
ug

hp
ut

 (o
ps

/u
se

c)
1 threads
4 threads
10 threads
40 threads
80 threads
160 threads

1 2 3 4 5 10 20 80 10
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

Number of retries

0

20

40

60

80

100

%
 o

ps
 c

om
pl

et
ed

 w
ith

 lo
ck

 a
cq

ui
si

tio
n

1 threads
4 threads
10 threads
40 threads
80 threads
160 threads

Figure 9. Throughput and percentage of operations completed with locks for different number of retries.

and evaluate concurrent bottom-up and top-down RBTs. We
first compared the HTM-based implementations with their
lock-based counterparts, and found out that HTM can pro-
vide up to 15 times better throughput for a relatively high
number of threads. Next, we investigated how the choice be-
tween bottom-up and top-down approaches affects the per-
formance of HTM. The results we obtained showed that the
top-down approach, which is the appropriate choice for a
lock-based implementation, does not fit to HTM because its
pessimistic nature leads to many tree restructures and as a
result the majority of transactions fail to commit due to con-
flicts. On the other hand, the bottom-up approach fully ex-
ploits HTM for up to a high number of threads, until a point
when HTM resources are shared by too many threads and
the performance deteriorates due to capacity aborts.

In our future work we intend to tackle the HTM limi-
tations by employing various optimizations. First, we will
attempt to split the coarse-grained transactions used in our
implementations to consecutive fine-grained transactions, in
order to reduce capacity aborts. Second, instead of using a
global lock in the fallback path, which aborts all running
transactions, a per-cpu lock could be used to only abort
threads executing in the same core. This way, threads that
would otherwise abort due to resource sharing, will be given
the chance to execute using all the available resources, while
threads on other cores will keep executing concurrently.

Acknowledgments
This research was funded by project I-PARTS: ”Integrating
Parallel Run-Time Systems for Efficient Resource Alloca-
tion in Multicore Systems” (code 2504) of Action ARIS-
TEIA, co-financed by the European Union (European So-
cial Fund) and Hellenic national funds through the Oper-
ational Program Education and Lifelong Learning (NSRF
2007- 2013). The IBM 8247-22L servers on which we have
evaluated our implementations have been kindly provided by
IBM Hellas.

References
[1] M. Herlihy and J. E. B. Moss, “Transactional memory: Archi-

tectural support for lock-free data structures,” in Proceedings of
the 20th Annual International Symposium on Computer Archi-
tecture, ISCA ’93, (New York, NY, USA), pp. 289–300, ACM,
1993.

[2] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of intel transactional synchronization extensions for
high-performance computing,” in Proceedings of the Interna-
tional Conference on High Performance Computing, Network-
ing, Storage and Analysis, SC ’13, (New York, NY, USA),
pp. 19:1–19:11, ACM, 2013.

[3] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and
H. Le, “Robust architectural support for transactional memory
in the power architecture,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, ISCA ’13,
(New York, NY, USA), pp. 225–236, ACM, 2013.

[4] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Bar-
ton, R. Silvera, and M. Michael, “Evaluation of blue gene/q
hardware support for transactional memories,” in Proceed-
ings of the 21st International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’12, (New York, NY,
USA), pp. 127–136, ACM, 2012.

[5] R. Sedgewick, “Left-Leaning red black trees.” http://www.

cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf.

[6] L. J. Guibas and R. Sedgewick, “A dichromatic framework for
balanced trees,” in Foundations of Computer Science, 1978.,
19th Annual Symposium on, pp. 8–21, Oct 1978.

[7] R. Bayer and M. Schkolnick, “Readings in database systems,”
ch. Concurrency of Operations on B-trees, pp. 129–139, San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1988.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. The MIT Press, 3rd ed., 2009.

[9] R. A. Tarjan, “Efficient top-down updating of red-black trees,”
Tech. Rep. TR-006-85, Department of Computer Science,
Princeton University, 1985.

http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf

	Introduction
	Background
	Concurrent RBTs
	Lookup
	Insertion
	Deletion
	Implementations

	Hardware Transactional Memory
	Experimental Evaluation
	Experimental Setup
	HTM-based vs Lock-based
	Bottom-up vs Top-down HTM
	HTM Limitations
	Global-lock fallback

	Conclusions and future work

