
An Opaque Hybrid Transactional Memory

Wenjia Ruan and Michael Spear
Lehigh University

{wer210, spear}@cse.lehigh.edu

Abstract
The arrival of best-effort hardware transactional memory (TM) cre-
ates a challenge for designers of transactional memory runtime li-
braries. On the one hand, using hardware TM can dramatically re-
duce the latency of transactions. On the other, it is critical to create
a fall-back path to handle the cases where hardware TM cannot
complete a transaction, and this path ought to be scalable and rea-
sonably fair to all transactions. Additionally, while the hardware-
accelerated system is likely to have weaker safety guarantees than
a pure hardware TM, it ought not to be weaker than what software
TM guarantees.

We propose a new hybrid TM algorithm based on the “Cohorts”
software TM algorithm. Our algorithm guarantees opacity by pre-
venting any transaction from observing the un-committed state of
any other transaction. It does so via a novel state machine that max-
imizes the use of hardware TM, while affording opportunity to en-
force fairness policies. We present an implementation of our Hy-
brid Cohorts that prioritizes transactions that fall back to software
mode. In this manner, we ensure that long-running transactions do
not starve, while still allowing concurrency among hardware and
software transactions.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

Keywords Transactional Memory, Synchronization, TSX, Opac-
ity, GCC

1. Introduction
For over 20 years, Transactional Memory (TM) [12] has been
viewed as the most promising proposal for simplifying the creation
of correct, scalable concurrent programs. The concept behind TM is
tantalizingly simple: programmers merely annotate regions of code
that must appear to execute atomically, and then a run-time system,
augmented with custom hardware, executes those regions concur-
rently (as “transactions”). During execution, the run-time system
tracks memory accesses, detects conflicts, and aborts and retries
transactions as necessary to ensure that the program behavior is
equivalent to one in which the execution of transactions does not
overlap.

The recent addition of TM support to IBM [14, 34] and In-
tel [13] processors brings the field of concurrent programming
much closer to a state in which programmers can eschew locks in
favor of transactions. However, first-generation hardware TM sys-
tems carry a number of limitations. Most significantly, these im-
plementations are “best effort” [17], in that they do not guarantee
that any transaction attempt will commit. In particular, a transaction
attempt may fail if it accesses more unique locations than the hard-
ware can support, or if there is an interrupt (e.g., a timer interrupt)
during its execution. Consequently, a TM runtime that wishes to
use hardware TM must provide a software fall-back path. This fall-
back path also provides a means of circumventing the hard-coded

conflict resolution strategy (“requester wins” [1]) that the hardware
enforces, so as to allow the run-time system to improve the chance
that a long-running transaction does not starve.

Broadly speaking, TM runtime systems that combine the use
of hardware TM with a software fall-back path are called hybrid
TM [24]. Existing hybrid TM proposals can be categorized as
follows:
• Low-Scalability Fall-back: Lev’s PhaseTM [18] was among the

earliest hybrid TMs. While it envisioned a variety of differ-
ent ways to compose hardware and software transactions, it
required that all transactions used the same technique at the
same time (i.e., all use hardware, or all use a software TM algo-
rithm). Of the many approaches, the combination of hardware
TM with a single-lock fall-back was perhaps the most straight-
forward [4], and has subsequently been improved, e.g., by Cal-
ciu et al. [3].

• Scalability Through Non-Transactional Actions: The systems
by Dalessandro et al. [5] and Riegel et al. [26] both assumed that
the underlying hardware TM would allow non-transactional op-
erations within a transactional context (for reading and writ-
ing, respectively). Without this support, these systems degrade
roughly to PhaseTM when executed on existing TM hardware.

• Hybrid TM-Specific Hardware: proposals by Minh et al. [23],
Shriraman et al. [32], and Saha et al. [30] assumed that the
hardware TM would provide a wide API so that a hybrid run-
time system could use parts of the hardware (e.g., tracking
cache invalidations of specific lines) to accelerate software TM.
The hardware for these systems is not currently available, nor
does it appear in any product roadmaps.

• Reduced Hardware Capacity: Systems by Kumar et al. [16],
Damron et al. [7], and Riegel et al. [26] required all hardware
transactions to access the per-location metadata used by the
software TM fall-back. This approach can improve the concur-
rency between hardware and software transactions, but it effec-
tively halves the capacity of the hardware, and is largely viewed
as impractical.

• Unsafe Hybrid TM: The Invyswell system [2] reduces the safety
of hybrid transactions by sacrificing opacity [11]. The resulting
system cannot guarantee correctness in the face of certain pat-
terns [8], but can scale well on existing systems.

• Behavior-Specific Hybrid TM: Reduced Hardware NOrec [20]
ensures opacity and is compatible with existing hardware TM.
However, its performance relies upon transactions following a
specific pattern, in which there is a large read-only prefix before
the transaction’s first attempted write. While appropriate for
data structures, this may not be a suitable approach for realistic
applications.
From an architectural perspective, we believe it unlikely that

vendors will extend future micro-architectures with hybrid TM fea-
tures or add non-transactional actions. However, it is likely that fu-
ture hardware TM may overcome its existing capacity constraints
(e.g., by expanding the capacity/associativity of private caches, or

1 2015/6/3

S

Last writer STx
ready to commit
& no read-only
STx remain

CP

Writer STx ready to commit /
Read-only STx commit /

HTx begin* /
HTx abort*SA

HTx or STx begin /
Read-only STx commit /

HTx abort

HC

STx HTM commit /
STx abort /

HTx begin* /
HTx commit* /

HTx abort*

SC
STx slow commit /

STx slow abort

NS

(a) State transitions of the Hybrid Cohorts algorithm. STx refers to a software-mode transac-
tion, and HTx refers to a hardware-mode transaction. The lack of a label on an arc indicates
that a transaction behavior is either impossible or not allowed. For example, an HTx is not
allowed to commit in the SA or CP states, and it is not possible for an STx to abort in these
states.

Last writer STx ready
to commit & no read-
only STx remain Seal

Writer STx ready
to commit /
Read-only STx
commit

Open

STx begin /
Read-only STx commit

Commit

STx commit /
STx abort

(b) State transitions of the Cohorts algorithm. The Open,
Seal, and Commit states correspond to the SA, CP, and
SC states of Hybrid Cohorts.

Figure 1: State transitions for the Hybrid Cohorts (left) and Cohorts (right) algorithms.

by moving conflict tracking structures higher in the cache hierar-
chy). Thus we believe that the most important qualities of a hybrid
TM are to provide a safe programming model, to minimize the use
of hardware capacity for tracking metadata, and to emphasize fair-
ness and progress for transactions that fall back to software.

To provide these properties, we introduce the Hybrid Cohorts
(HyCo) algorithm. Based on the Cohorts algorithm [28], HyCo uses
a state machine to manage the behavior of transactions. By guaran-
teeing the immutability of memory during any software transac-
tion’s execution, and employing hardware TM as broadly as possi-
ble, HyCo minimizes instrumentation for all transactions, and elim-
inates many of the bottlenecks of the original Cohorts algorithm,
without sacrificing safety.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss the overall approach of the Hybrid Cohorts algo-
rithm, with a focus on the state machine that governs transaction be-
havior. Section 3 presents the pseudocode for one implementation
of the state machine, which aims to limit the impact on transactions
that use hardware TM resources throughout their execution. In Sec-
tion 4, we present the results of performance experiments. Section 5
concludes and discusses some future research directions.

2. The Hybrid Cohorts Algorithm
The foundation of the HyCo algorithm is a state machine that gov-
erns when transactions may begin, as well as when and how they
commit. This state machine appears in Figure 1a. For reference, the
original Cohorts state machine is provided in Figure 1b.

In the original Cohorts algorithm, the role of the state machine
was to ensure that memory remained constant whenever a transac-
tion was in-flight (i.e., between its begin and end points). This en-
tailed blocking writing transactions from committing whenever a
transaction was in-flight, and blocking transactions from beginning
whenever a transaction was committing. The Cohorts algorithm
also assumed that a transaction requiring irrevocability [33, 35]
could do so by starting directly in the commit state.

In our new algorithm, we begin by formalizing irrevocability
through the addition of a “serial” state (S). We then split the entry

state (Cohorts::Open): instead of indicating that software transac-
tions may be active, the split state distinguishes between when at
least one software transaction is active (SA), and when no software
transactions are running (NS). The commit pending state (CP) is
equivalent to the Cohorts::Seal state. Finally, the Cohorts::Commit
state is split, so that one-at-a-time slow commit (SC) can be avoided
via a HTM-assisted commit phase (HC).

The original Cohorts algorithm also exposed options for how to
detect conflicts, to include the use of ownership records [9, 29] or
values [6, 25]. In HyCo, we exclusively use value-based conflict
detection. To use other metadata would necessitate the use of HTM
resources for concurrency control, which would, in turn, reduce the
size above which transactions must run in software mode.

The algorithm affords a number of implementation choices and
options. For example, the labels marked with an asterisk(∗) cor-
respond to a variant in which more hardware-mode transactions
(HTx) are allowed. Similarly, there are a variety of ways to choose
the order in which transactions perform their slow commit, depend-
ing on contention management [31] policies. For this discussion,
we assume that the contention manager randomly chooses the or-
der in which transactions attempt to commit.

2.1 Transitions
The initial state of the system is NS, indicating that no software
or serial transactions are running. Should a transaction require
serial-mode execution, it does so by transitioning from the NS
state to the S state. This transition may entail either (a) forcibly
aborting any in-flight hardware transactions, or (b) setting a flag
to prevent subsequent HTx and STx transactions from beginning,
and then waiting for the system to be in the NS state with no
HTx transactions running. Implementation details for achieving
this transition appear in Section 3.

When a transaction is in serial mode, it is not allowed to abort,
and no other transactions may execute. When the transaction com-
mits, the system transitions back to the NS state.

In the NS state, there are no STx transactions running. Thus
as long as the system remains in NS state, HTx transactions may

2 2015/6/3

execute in their entirety, either committing or aborting and retrying.
However, as soon as an STx begins, the system transitions from
NS to SA. In SA, new hardware and software transactions may
begin. However, hardware transactions may not commit: they must
abort or wait if they reach their commit point while the system is in
the SA state. STx transactions accumulate their reads and writes in
thread-private logs, with all writes buffered until commit time. As
in the Cohorts algorithm, a read-only STx (detected by its empty
write log) can commit directly from the SA state, since it does not
modify memory. This may transition the system back to NS, if it
results in all remaining transactions being STx.

From the SA state, as soon as the first writing STx is ready to
commit, the system transitions to the Commit Pending (CP) state.
From this state, additional read-only STx may commit, writing STx
may announce that they are ready to commit, and HTx may begin or
abort. Note that none of these transaction behaviors can affect the
in-flight STx, since these behaviors do not affect shared memory.

When the last STx reaches the CP state, HyCo transitions to the
HTM-assisted Commit state (HC). Any in-flight HTx transactions
are permitted to commit immediately; all STx transactions use a
hardware transaction to first validate their read set, and if it has not
changed, to replay all writes from the thread-private log. Note that
when an HTx transaction aborts, it can retry immediately, as can
a hardware transaction attempting to commit the STx. However, if
the STx validation fails, then the STx does not retry until the system
returns to the NS state.

If all STx can commit or abort from the HC state, then the sys-
tem transitions back to NS, even if HTx transactions are still exe-
cuting. However, if any STx cannot commit via HTM (e.g., due to
its read and write sets being too large to traverse and replay in a
hardware transaction), then once there are no further STx attempt-
ing to commit in HTM, and no remaining HTx, the system transi-
tions from HC to SC, where STx transactions commit sequentially.
As in the S state, some effort is needed to block HTx transactions
from beginning, or else this transition may be delayed indefinitely.
Once the transition occurs, the remaining STx are guaranteed that
(a) no new transactions can start, and (b) no other transactions are
attempting to commit. Thus the STx can, in turn, validate their
read sets and then either abort or write-back their updates. Once
all pending STx have done so, the system returns to the NS state.

2.2 Key Properties
Earlier, we argued that a hybrid TM should ensure safety, limit
use of hardware capacity for tracking metadata, and should enable
some sort of fairness and progress for STx transactions. We briefly
discuss each of these points in relation to the HyCo algorithm
below:

Safety: The HyCo algorithm provides opacity [11] for all trans-
actions. In Cohorts, opacity is achieved by ensuring that all shared
memory is immutable whenever a transaction is in-flight. In HyCo,
where there are two flavors of transaction, we modify this crite-
ria: when a STx is in-flight, no concurrent HTx or STx transaction
may perform an operation that modifies locations that have been,
or may be, read by the in-flight STx. A concurrent STx transac-
tion may progress up to its commit point, and may create pending
changes to memory via the TxWrite function (as in Algorithm 5).
However, it may not transition to the HC or SC state. Thus the con-
current STx cannot perform an operation that changes the memory
visible to the in-flight STx. In this case, the property is achieved
through the write buffering performed by STx. Similarly, a concur-
rent HTx may not transition to the HC state, where it can complete
its transaction. Since HTx writes are buffered by the hardware until
the commit point, the HTx cannot affect the behavior of the con-
current STx.

Now let us turn to an HTx transaction. Dalessandro et al. es-
tablished that in a lazy Hybrid TM, an HTx transaction can experi-
ence an opacity violation if it overlaps with a concurrent STx com-
mit [5]. The specific issue they identified is that a lazy STx might
perform a partial write-back concurrent with the HTx, so that the
HTx reads some of the STx’s committed state, but not all of it.
More generally, a sufficient condition is to prevent incomplete STx
write-back from being visible to an HTx execution. In HyCo, this is
achieved by (a) forbidding an STx from reaching the SC state until
there are no concurrent HTx, and (b) attempting to commit STx in
the HC state. In the HC state, the STx uses a hardware transaction
to both validate and perform write-back; consequently the STx can-
not expose its partial state: the entire set of updates becomes visible
when the hardware transaction commits.

Metadata: As discussed above, HyCo does not use per-location
metadata. Instead, it tracks the values read by a STx, and then val-
idates those values directly. In this manner, it does not spend pre-
cious HTM resources tracking metadata. As a result, only a con-
stant amount of metadata is needed for any HTx or STx transac-
tion. As we will show in Section 3, the state machine can be imple-
mented in a variety of ways, but the only global metadata for HyCo
is related to the state machine, and it is only accessed at transaction
boundaries. This results in a constant amount of metadata, and a
constant overhead to access that metadata.

Fairness and Progress: HyCo supports a variety of approaches
to ensuring fairness and progress. A few properties are relatively
obvious: any transaction can be guaranteed to complete if it exe-
cutes in Serial mode, and every read-only transaction will complete
on its first attempt if it executes in STx mode. Beyond this, HyCo
increases fairness by limiting the conditions in which a transaction
cannot make progress. In particular, we have taken care to allow
HTx to begin and commit when an STx is committing via HTM
(HC state). Coupled with the simple existence of HC state, this lim-
its the situations in which the system serializes. In addition, HyCo
exposes two knobs for tuning progress. The first is a count of the
number of HTx aborts before falling back to STx mode. The second
is a count of the number of STx aborts before falling back to Se-
rial mode. When combined with optional contention management
at the beginning of the HC and SC states, there is ample oppor-
tunity to ensure that the most advantageous transactions are given
priority.

3. Implementation
The primary challenge in implementing HyCo is to achieve a low-
latency implementation of the state machine from Figure 1a. The
most natural solution is to track each thread’s state in a thread-
private variable. However, doing so results in high latency in the
common case: an HTx must check O(#Threads) locations at
begin time. On the other hand, implementing each state as a counter
is also a poor choice, since certain counters become contention hot-
spots.

Our solution, presented in Listing 1, is to split the state machine
into three parts. First, there is a list of Thread objects, through
which per-thread states for non-transactional, Serial, HTM, and
STM mode can be discerned. This list is employed by all trans-
actions. Second, we use an Integer and three Booleans to control
when HTx can begin, and when they must immediately abort. Fi-
nally, three Integers and one Boolean are used to manage the states
of STx and Serial transactions.

HTx Behavior: Algorithms 1- 3 describe how HTx, STx, and
Serial transactions use these variables to safely transition among
states. The default state is NS, in which HTx may begin and com-
mit. Departing from this state requires an STx or Serial transac-

3 2015/6/3

Listing 1: Hybrid Cohorts metadata. Global variables are clustered according to whether they assist in (a) coordinating all transactions,
(b) coordinating HTx transactions, or (c) coordinating STx transactions.

Thread Variable Type:
tx state : Enum{NO, S, HW, SW} // state of thread’s transaction (nontransactional, serial, HTx, STx)
writes : Map<addr,val> // write set if this transaction is in STx mode
reads : Set<addr,val> // read set if this transaction is in STx mode
my order : Integer // commit order of this transaction if it is in STx mode and using serial commit (SC)
cp : Checkpoint // checkpoint of thread state, for retrying after STx aborts.

Global Variables:
threads : Set<Thread> // A way of reaching each thread’s per-thread vars

started : Integer // Count of current active STx transactions
ser kill : Boolean // Flag to allow a Serial transaction to force immediate HTx aborts
stx kill : Boolean // Flag to allow an STx in SC mode to force immediate HTx aborts
stx comm : Boolean // Indicate that all STx are ready to commit

cpending : Integer // Count of STx that are in the CP state
order : Integer // Counter for ordering any STx that require SC mode to commit
time : Integer // Second counter for STx that require SC mode to commit
serial : Boolean // Token for granting a transaction permission to run in Serial mode

Algorithm 1: Begin and end instrumentation for HTx transac-
tions. Parameters to xabort indicate the line to jump to after
canceling a transaction attempt.

function TXBEGINHTX()
// Announce active HTx

1 tx state← HW
2 xbegin

// Detect Serial and STx-SC transactions
3 if ser kill ∨ stx kill then
4 xabort(6)

5 return
// Wait until no Serial or STx-SC transactions

6 tx state← NO
7 while ser kill ∨ stx kill do spin

// Note: option to change to STx or Serial would go here
8 goto 1

function TXCOMMITHTX()
// Commit if all STx in HC mode or no STx

1 if stx comm ∨ started = 0 then
2 xend
3 tx state← NO
4 return

// Cannot commit: in-flight STx or STx in SC mode
5 xabort(TxBeginHTx :: 6)

tion to begin. To keep overheads low for HTx, we subscribe to the
ser kill flag when an HTx begins. After becoming serial, but be-
fore accessing shared memory, a Serial transaction sets this flag
to immediately abort all HTx. By optionally using the threads set
first (TxBeginSerial lines 4-5), we can opt to prioritize running
HTx over new Serial transactions.

Since HTx can execute concurrently with STx, we do not repeat
this behavior when STx begin. Instead, we must ensure that HTx do
not commit when either (a) STx are between their begin and end, or
(b) STx are performing serial commit. The stx kill flag expresses
condition (b). To handle condition (a), we use the started and

Algorithm 2: Begin instrumentation for STx transactions.

function TXBEGINSTX()
1 cp← make checkpoint()

// Try to set started while ¬serial and cpending = 0
2 if ¬serial then

// Wait for committing STx, then announce self
3 while cpending > 0 do spin
4 atomic incr(started)

// Double-check that it’s safe to start
5 if cpending > 0 ∨ serial then
6 atomic decr(started)
7 goto 2

8 tx state← SW
// Lazy cleanup of STx-SC flag

9 if stx comm then stx comm← false

10 else goto 2

cpending counters. When they are equal, every STx transaction
has reached its commit point, and are trying to commit using
HTM. In this case, HTx can commit, since the HTM will mediate
conflicts. However, if they differ, then the HTx must abort.

STx Behavior: STx are expected to be less frequent than HTx,
and also to be longer-running. Thus we tolerate some contention
over metadata, since it reduces the number of locations that HTx
must check. Specifically, we use the started counter to track the
number of STx that are not yet committed, and cpending to track
the number of STx that have reached their commit point. The order
and time counters are used only for SC commits, to enforce one-
at-a-time commit of large STx.

To maximize HTx concurrency with STx, we do not eagerly
inform HTx of transitions between NS, SA, CP, and HC. Instead,
we use the stx comm flag, which indicates that STx have moved
to HC state. While two values are needed to manage the SA-CP-HC
transition, this specific pattern avoids aborts for HTx, since started
changes infrequently when stx comm is set.

The additional transition to SC for serialized commit of STx
is expected to be rarest. We employ the same technique as Serial

4 2015/6/3

Algorithm 3: End instrumentation for STx transactions.

function TXCOMMITSTX()
// Read-only fast path

1 if writes = ∅ then
2 atomic decr(started)
3 reads← ∅
4 return

// Wait until all STx ready to commit
5 atomic incr(cpending)
6 while cpending < started do wait

// STx will try to commit via HTM
7 if ¬stx comm then stx comm← true;
8 xbegin
9 if reads.validate() then

10 writes.writeback()
11 xend
12 atomic decr(started)
13 atomic decr(cpending)
14 reads← writes← ∅
15 tx state← NO
16 return
17 else xabort(38)
18 // STx couldn’t commit via HTM. Use serialized commit
19 my order ← atomic incr(order)

// Lead thread waits for HC phase to end, others wait
their turn

20 if order = 0 then
21 while order < started do spin

// Optional: allow HTx to complete
22 for tx ∈ {threads− this thread} do
23 wait until(tx.tx state 6= HW)

// Interrupt remaining HTx
24 stx kill← true

25 else while time 6= my order do spin

// Writeback only if validation succeeds
26 if reads.validate() then writes.writeback()
27 else failed← true

// Let next STx commit
28 time← time+ 1

// Clean up SC metadata; extra work for last thread
29 old← atomic decr(started)
30 if old = 1 then
31 stx kill← false
32 time← order ← 0

33 atomic decr(cpending);
34 tx state← NO
35 reads← writes← ∅
36 if failed then cp.restore()
37 else return

// Reachable only on HC validation failure
38 atomic decr(started);
39 atomic decr(cpending);
40 reads← writes← ∅
41 tx state← NO
42 cp.restore()

Algorithm 4: Begin and end instrumentation for Serial trans-
actions

function TXBEGINSERIAL()
// Acquire serial lock

1 while ¬bool cas(serial, false, true) do spin
2 tx state← S

// Wait for committing STx
3 while started > 0 do spin

// Optional: allow HTx to complete
4 for tx ∈ {threads− this thread} do
5 wait until(tx.tx state = NO)

// Interrupt remaining HTx
6 ser kill← true

function TXCOMMITSERIAL()
// Release lock, re-enable HTx

1 ser kill← false
2 serial← false
3 tx state← NO

transactions, where a flag (stx kill) is coupled with a traversal
of the threads set (TxCommitStx lines 22-23) to allow HTx to
complete before serial STx.

A final complication is that, for the sake of fairness, we do not
allow new STx to begin once any STx is ready to commit writes.
This necessitates care in TxBeginSTx, since we must double-
check cpending after incrementing started.

Serial Behavior: Serial transactions are expected to be least
common, and thus we are willing to incur overhead whenever one
begins. In particular, after acquiring the serial token, a transaction
will wait for all active STx and HTx to complete. By setting the
serial flag first, it effectively prevents new STx. After allowing
HTx to complete, it sets ser kill to prevent additional HTx, at
which point it can begin. Both flags are cleared when the transac-
tion completes.

Per-Access Instrumentation: For completeness, Algorithm 5
presents the read and write instrumentation for the HyCo algo-
rithm. As in the original Cohorts algorithm, per-access instrumen-
tation is minimal, entailing neither metadata access nor memory
fences. This is because (a) memory is immutable during STx ex-
ecution, (b) Serial transactions execute in the absence of concur-
rency, and (c) HTx conflicts are mediated through the HTM, not
through metadata.

4. Evaluation
In this section, we evaluate the performance of HyCo. We consider
microbenchmarks and the STAMP benchmark suite [22, 27]. Ex-
periments are conducted on a machine with single-chip 3.40GHz
Intel Core i7-4770 with 4 cores / 8 threads, running Ubuntu Linux
13.04, kernel 3.8.0-21, and a 4.9 GCC compiler with O3 and m64
flags. Results are the average of 5 trials.

To compare with HyCo, we consider the following TM imple-
mentations:
• STM Eager is the default STM implementation provided with

GCC. It is based on TinySTM’s write-through algorithm [10]:
write locks are acquired eagerly upon first write access to a lo-
cation, undo logs track changes made by transactions, in case
of an abort, and reads check the version number of locks. Con-
flicts are detected via validation, and a global counter is used

5 2015/6/3

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1 2 3 4 5 6 7 8T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
 /
 s

e
c
o
n
d
)

Threads

STM_Eager
STM_Lazy

HTM
HTM_20
HyNOrec

HyNOrec-RH
HyCo

HyCo-Turbo

(a) Red/black tree microbenchmark with 20-bit keys
and 80% lookup ratio

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1 2 3 4 5 6 7 8T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
 /
 s

e
c
o
n
d
)

Threads

(b) Red/black tree microbenchmark with 20-bit keys
and 33% lookup ratio

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 1 2 3 4 5 6 7 8T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
 /
 s

e
c
o
n
d
)

Threads

(c) Red/black tree microbenchmark with 8-bit keys
and 80% lookup ratio

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 1 2 3 4 5 6 7 8T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
 /
 s

e
c
o
n
d
)

Threads

(d) Red/black tree microbenchmark with 8-bit keys
and 33% lookup ratio

Microbenchmark NS HTx:HC STx:RO STx:HC STx:SC Serial
20-bit / 33% lookup 1.96M 50.4K 44 37 9 0
20-bit / 80% lookup 2.09M 7.6K 72 8 7 0
8-bit / 33% lookup 5.00M 381K 569 180 70 28
8-bit / 80% lookup 9.32M 25K 1.98K 344 330 14

(e) Frequency of each type of commit for four microbenchmarks. Data is taken from a one-second
execution with four threads. The workload was heterogeneous, and values were reported by a
randomly chosen thread.

Figure 2: Microbenchmark performance

Algorithm 5: Hybrid Cohorts read and write instrumentation

function TXREAD(addr)
// Serial and HTM fast-path

1 if tx state ∈ {S,HW} then
2 return ∗addr

// Handle read-after-write
3 if addr ∈ writes then
4 return writes[addr]

// Read the value, and log it for commit-time validation
5 v ← ∗addr
6 reads← reads ∪ {〈addr, v〉}
7 return v

function TXWRITE(addr, val)
// Serial and HTM fast-path

1 if tx state ∈ {S,HW} then *addr = val
// Buffer the write until commit time

2 else writes← writes ∪ {〈addr, v〉}

to avoid most validation during transaction execution. Writer
transactions use quiescence to achieve privatization safety.

• STM lazy is a commit-time locking version of STM Eager.
Writes are stored in a redo log, which is implemented as a hash
table of 64-byte blocks. Write locks are acquired at commit
time. In all other regards, the implementation is the same as
STM Eager. The main value of STM lazy in our experiments is
in identifying overheads related to redo logs.

• HTM: a) HTM is the default HTM implementation provided
with GCC. Transactions attempt to run using Intel RTM, and
fall back to a serial execution mode after two consecutive HTM

aborts. b) HTM 20 modifies the above HTM implementation
so that fallback to serial mode occurs after 20 attempts.

• HyNOrec: There are two suggestted implementations that do
not require non-transactional reads in the original HyNOrec
proposal [5]. We present the P-counter version in Microbench-
mark and STAMP suite, as it outforms the 2-location version.

• HyNOrec RH is the most recent reduced hardware Hybrid
NOrec implementation adopted from [21]. We did not apply the
complier static analysis to reduce the instrumentation of read-
only hardware transactions, for fair comparison with other TM
implementations, which could all benefit from such analysis.
Our version of HyCo employs the following optimizations:

• Lightweight Privatization Safety: Since writer transactions
either (a) commit via HTM, or (b) commit during the serial-
ized (SC) phase, there is no need for out-of-band privatization
safety. Our HyCo implementation thus skips GCC’s quiescence
mechanism.

• Lightweight Irrevocability: GCC achieves serial execution via
adaptivity. In contrast, Serial mode is a first-class behavior
within HyCo, and thus we can avoid interaction with a custom
readers/writer futex on every transaction.

• Un-instrumented HTM Loads and Stores: GCC creates two
code paths for transactions: one suitable for STM, in which
loads and stores of shared memory are transformed into func-
tion calls, and one suitable for HTM, in which loads and stores
are not instrumented. Given the lightweight instrumentation in
Algorithm 5, HyCo is able to use the latter approach for HTx.

We also present HyCo-Turbo, which additionally provides a lightweight
software path. Since it is natural for a STx to be aware of the num-
ber of existing software transactions, a STx can turn into turbo
mode by sealing the cohort early if it a) confirms that no other
STx is running and b) successfully aborts all running HTx. A turbo
mode STx does not require further instrumentation on reads/writes,
or validation at commit time.

6 2015/6/3

We set HyCo thresholds as follows: An HTx transaction will
switch to STx mode after 20 failed attempts to commit. An STx
transaction will switch from committing in HC mode to committing
in SC mode after 2 failed attempts. Fall-back to Serial mode occurs
after 5 failed commit-time validations by an STx transaction.

4.1 Microbenchmark Performance
We begin our evaluation by looking at microbenchmark perfor-
mance. We consider four configurations of a red-black tree test,
taken from the RSTM library [19]. Configurations differ in terms
of the range of keys present in the tree, and the ratio of lookups to
inserts and removes (insert and remove operations are always per-
formed in equal amounts). In all cases, the tree is pre-populated to
50% full. The charts in Figure 2 present throughput as the average
over five trials.

At one thread, htm and HyCo performance are identical, and
uniformly better than STM. This is expected, since transactions are
small enough to complete without exceeding hardware capacity.
As we increase the thread count, and contention increases, we see
a significant shift: the rapid fall-back to serial mode hurts htm,
both because it is too early, and because it limits concurrency.
Even htm 20, our version of the GCC htm that retries 20 times
before falling back to serial mode, cannot keep up with HyCo: the
opportunity cost of serialization, even after 10 failed attempts, is
simply too high. This is especially true for the highest contention
configuration (8-bit keys, 33% lookup), where htm 20 performance
degrades beyond 4 threads.

The performance of eager and lazy STM was also surprising
in this experiment. As expected, both scale well, and their use
of validation affords for fewer aborts than the “requester wins”
conflict resolution strategy [1] of HTM. However, latency is high:
they incur a function call on every load and store, and lazy pays
even more due to accesses to the write log on every load and store.
Furthermore, STM scales worse than HyCo. There are two causes:
the overhead of quiescence, and the cost to support irrevocability
via mode switching.

To gain a better understanding of why HyCo scales so much
better than GCC’s htm, we measured the frequency of each type of
commit for the HyCo execution of the benchmarks. While the ma-
jority of transactions can commit using HTM (NS state), there are
nontrivial instances in which transactions fall back to STx mode.
While STx transactions are rare, the number of HTx transactions
that commit concurrently with STx (i.e., when the STx is in HC
mode) is high (indicated by HTx:HC). This confirms that the oppor-
tunity cost of serializing is high: in htm and htm 20, every fallback
to STx becomes a fallback to Serial, and all concurrency among
HTx:HC, STx:RO, and STx:HC is lost. Worse, these often result in
a cascade of transactions that fall back to serial mode. This is most
unfortunate for read-only STx, which otherwise are concurrent.1

4.2 STAMP Performance
STAMP performance is shown in Figure 3. Unlike microbench-
mark experiments, STAMP performance is shown as total time. The
expectation is that more threads will result in a decreased execution
time.

As in previous work [27], we observe that the Labyrinth bench-
mark shows little variation among algorithms. This is a conse-
quence of the benchmark being rewritten to match the Draft C++
TM Specification: transactions no longer comprise a significant
portion of execution time. As has become standard practice, we do

1 Note that we do not use compiler information to identify read-only trans-
actions; had we used this information, an optimized STx:RO fastpath would
be possible. In the tree workloads, many read-only transactions are not stat-
ically identifiable (e.g., an insert of a key that already exists), and thus such
an optimization would have less value than it might otherwise seem.

not report Bayes performance, since the benchmark exhibits non-
deterministic behavior.

Among the remaining 8 benchmark configurations, we see two
trends emerge. First, on workloads with high contention, such as
KMeans-HC and Vacation-HC, HTM performs best at one thread,
but its performance degrades as the thread count increases, due
to its reliance on serialization to ensure progress after repeated
aborts. In contrast, HyCo manages to maintain its performance
as contention increases, by falling back to STx. This trend peters
out to some degree at 8 threads for Vacation-HC, due hardware
multithreading effects: with four cores and 8 hardware threads,
transaction write capacities are effectively halved at 8 threads.
The low-contention variants of KMeans and Vacation show that as
contention decreases, HTM is able to perform on-par with HyCo,
but HyCo remains a superior choice overall. The same is true for
SSCA2, where small transactions run bottleneck-free in HyCo and
HTM.

The second trend is shown by Genome, Intruder, and Yada. In
these benchmarks, HyCo incurs higher latency than HTM in order
to interact with its write set. Recall that for STx transactions, HyCo
must perform a lookup on each read, and must buffer its writes in a
manner compatible with lookup. This necessitates a more complex
data structure (hash of blocks with masks) than the undo log used
by eager STM and the HTM fall-back. Consequently, we see that
STM lazy is a constant factor slower than STM eager, and that
HyCo similarly incurs high overhead. The problem is most extreme
in Yada, where the combination of (a) aborting as HTx before
falling back to STx; and (b) incurring write set overhead; results
in an insurmountable slowdown at all thread levels. Similarly, in
Genome and Intruder, the frequency of lookups creates a significant
overhead.

In effect, these results confirm claims made by Kestor et al. [15].
In their work, they showed that a proper implementation of lazy
STM in GCC incurred higher constant overhead than previously
believed. While we believe our lazy TM implementations to be
more optimal than theirs, the problem remains: the baseline for lazy
STM is worse than eager, especially in unmanaged languages.

On this last point, we conducted experiments with two different
write set implementations: a hash table and an unbalanced BST.
These tests showed that the data structure itself was not the slow-
down. Rather, the cost came from manipulating bit masks in order
to handle the case where a byte is accessed as part of multiple ac-
cesses of varying granularity (e.g., the byte is written, and then the
enclosing word is read). These costs may be fundamental to lazy
hybrid TM. If so, prior work that did not assume a compiler inter-
face to the hybrid TM, such as Hybrid NOrec [5] may need to be
reevaluated.

5. Conclusions and Future Work
In this paper, we presented the Hybrid Cohorts (HyCo) algorithm.
The foundation of HyCo is a state machine that governs when
transactions may begin, and when they may attempt to commit.
This state machine ensures correctness (opacity) by presenting each
transaction with the illusion that memory is immutable during pro-
gram execution. Given such a guarantee, hardware-mode transac-
tions can run virtually instrumentation-free, all inter-thread coordi-
nation is constrained in the transaction begin and commit functions,
and even software-mode transactions can use hardware TM support
to accelerate their commit operations.

Due to the relative newness of Hybrid TM for real-world sys-
tems, there is no common testbed for comparing different algo-
rithms. We hope that such a platform will emerge soon, and that
it will be built atop GCC so as to address real-world concerns. In-
deed, our experiments show that redo logs can have a higher cost
than previously reported, and this cost affects HyCo transactions

7 2015/6/3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

STM_Eager
STM_Lazy

HTM
HyNOrec

HyNOrec-RH
HyCo

HyCo-Turbo

(a) Labyrinth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(b) KMeans (HC)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(c) KMeans (LC)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(d) Vacation (HC)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(e) Vacation (LC)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(f) SSCA2

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(g) Intruder

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(h) Genome

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(i) Yada

Figure 3: STAMP performance. HC and LC refer to high- and low-contention command-line configurations.

that fall back to software mode. Whether this cost can be mitigated,
and how this cost might affect previously published hybrid TM, are
exciting areas for future research.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grants CAREER-1253362 and CCF-1218530.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation.

References
[1] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,

and D. A. Wood. Performance Pathologies in Hardware Transactional
Memory. In Proceedings of the 34th International Symposium on
Computer Architecture, San Diego, CA, June 2007.

[2] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and M. Herlihy.
Invyswell: A Hybrid Transactional Memory for Haswell’s Restricted
Transactional Memory. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation Techniques,
Edmonton, AB, Canada, Aug. 2014.

[3] I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy. Improved Single
Global Lock Fallback for Best-effort Hardware Transactional Mem-
ory. In Proceedings of the 9th ACM SIGPLAN Workshop on Transac-
tional Computing, Salt Lake City, UT, Mar. 2014.

[4] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riv-
iere. Evaluation of AMD’s Advanced Synchronization Facility within
a Complete Transactional Memory Stack. In Proceedings of the Eu-
roSys2010 Conference, Paris, France, Apr. 2010.

[5] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. Scott, and
M. Spear. Hybrid NOrec: A Case Study in the Effectiveness of Best
Effort Hardware Transactional Memory. In Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Newport Beach, CA, Mar. 2011.

[6] L. Dalessandro, M. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. In Proceedings of the 15th
ACM Symposium on Principles and Practice of Parallel Programming,
Bangalore, India, Jan. 2010.

[7] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid Transactional Memory. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, Oct. 2006.

[8] D. Dice, T. Harris, A. Kogan, Y. Lev, and M. Moir. Pitfalls of Lazy
Subscription. In Proceedings of the 6th Workshop on the Theory of
Transactional Memory, Paris, France, July 2014.

[9] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In Pro-
ceedings of the 20th International Symposium on Distributed Comput-
ing, Stockholm, Sweden, Sept. 2006.

[10] P. Felber, C. Fetzer, and T. Riegel. Dynamic Performance Tuning
of Word-Based Software Transactional Memory. In Proceedings of

8 2015/6/3

the 13th ACM Symposium on Principles and Practice of Parallel
Programming, Salt Lake City, UT, Feb. 2008.

[11] R. Guerraoui and M. Kapalka. On the Correctness of Transactional
Memory. In Proceedings of the 13th ACM Symposium on Principles
and Practice of Parallel Programming, Salt Lake City, UT, Feb. 2008.

[12] M. P. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In Proceedings of the 20th
International Symposium on Computer Architecture, San Diego, CA,
May 1993.

[13] Intel Corporation. Intel Architecture Instruction Set Extensions Pro-
gramming (Chapter 8: Transactional Synchronization Extensions).
Feb. 2012.

[14] C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory Archi-
tecture and Implementation for IBM System Z. In Proceedings of the
45th International Symposium On Microarchitecture, Vancouver, BC,
Canada, Dec. 2012.

[15] G. Kestor, L. Dalessandro, A. Cristal, M. Scott, and O. Unsal. In-
terchangable Back Ends for STM Compilers. In Proceedings of the
6th ACM SIGPLAN Workshop on Transactional Computing, San Jose,
CA, June 2011.

[16] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid
Transactional Memory. In Proceedings of the 11th ACM Symposium
on Principles and Practice of Parallel Programming, New York, NY,
Mar. 2006.

[17] Y. Lev and J.-W. Maessen. Split Hardware Transactions: True Nesting
of Transactions Using Best-Effort Hardware Transactional Memory.
In Proceedings of the 13th ACM Symposium on Principles and Prac-
tice of Parallel Programming, Salt Lake City, UT, Feb. 2008.

[18] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased Transactional
Memory. In Proceedings of the 2nd ACM SIGPLAN Workshop on
Transactional Computing, Portland, OR, Aug. 2007.

[19] V. J. Marathe, M. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.
Scherer III, and M. L. Scott. Lowering the Overhead of Nonblocking
Software Transactional Memory. In Proceedings of the 1st ACM SIG-
PLAN Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing, Ottawa, ON, Canada, June 2006.

[20] A. Matveev and N. Shavit. Reduced Hardware NOREC: An Opaque
Obstruction-Free and Privatizing HyTM. In Proceedings of the 9th
ACM SIGPLAN Workshop on Transactional Computing, Salt Lake
City, UT, Mar. 2014.

[21] A. Matveev and N. Shavit. Reduced Hardware NOrec: A Safe and
Scalable Hybrid Transactional Memory. In Proceedings of the 20th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Istanbul, Turkey, Mar. 2015.

[22] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stan-
ford Transactional Applications for Multi-processing. In Proceedings
of the IEEE International Symposium on Workload Characterization,
Seattle, WA, Sept. 2008.

[23] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun. An Effective Hybrid Trans-
actional Memory System with Strong Isolation Guarantees. In Pro-
ceedings of the 34th International Symposium on Computer Architec-
ture, San Diego, CA, June 2007.

[24] M. Moir. Unpublished Manuscript, July 2005.
[25] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A Dynamic

Binary-Rewriting Approach to Software Transactional Memory. In
Proceedings of the 16th International Conference on Parallel Archi-
tecture and Compilation Techniques, Brasov, Romania, Sept. 2007.

[26] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimiz-
ing Hybrid Transactional Memory: The Importance of Nonspeculative
Operations. In Proceedings of the 23rd ACM Symposium on Paral-
lelism in Algorithms and Architectures, June 2011.

[27] W. Ruan, Y. Liu, and M. Spear. STAMP Need Not Be Considered
Harmful. In Proceedings of the 9th ACM SIGPLAN Workshop on
Transactional Computing, Salt Lake City, UT, Mar. 2014.

[28] W. Ruan, Y. Liu, C. Wang, and M. Spear. On the Platform Specificity
of STM Instrumentation Mechanisms. In Proceedings of the 2013 In-

ternational Symposium on Code Generation and Optimization, Shen-
zhen, China, Feb. 2013.

[29] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A High Performance Software Transac-
tional Memory System For A Multi-Core Runtime. In Proceedings
of the 11th ACM Symposium on Principles and Practice of Parallel
Programming, New York, NY, Mar. 2006.

[30] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural Support
for Software Transactional Memory. In Proceedings of the 39th
IEEE/ACM International Symposium on Microarchitecture, Orlando,
FL, Dec. 2006.

[31] W. N. Scherer III and M. L. Scott. Advanced Contention Management
for Dynamic Software Transactional Memory. In Proceedings of the
24th ACM Symposium on Principles of Distributed Computing, Las
Vegas, NV, July 2005.

[32] A. Shriraman, M. Spear, H. Hossain, S. Dwarkadas, and M. L. Scott.
An Integrated Hardware-Software Approach to Flexible Transactional
Memory. In Proceedings of the 34th International Symposium on
Computer Architecture, San Diego, CA, June 2007.

[33] M. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and M. L.
Scott. Implementing and Exploiting Inevitability in Software Transac-
tional Memory. In Proceedings of the 37th International Conference
on Parallel Processing, Portland, OR, Sept. 2008.

[34] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael. Evaluation of Blue Gene/Q Hardware
Support for Transactional Memories. In Proceedings of the 21st
International Conference on Parallel Architectures and Compilation
Techniques, Minneapolis, MN, Sept. 2012.

[35] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable Transactions
and their Applications. In Proceedings of the 20th ACM Symposium on
Parallelism in Algorithms and Architectures, Munich, Germany, June
2008.

9 2015/6/3

