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Common pattern: transaction conflicts due to writes near
the end:

easy to conflict

tbegin | s tend
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: abort : abort
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Suppose we could overlap the nonconflicting parts? :
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Staggered Transactions

= Compiler identifies instructions that are likely to be
initial accesses to a shared cache block

— inserts instrumentation for optional activation

" Runtime system collects statistics on causes of aborts
= Policy chooses which “advisory locking point” (ALP),
if any, to activate in future, and which lock to acquire

— may be based on instruction pointer or data address

— may promote to “parent” IP based on data structure
analysis
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Hardware Support

1. To acquire an advisory lock, need nontransactional
loads and stores

— or transaction suspend/resume

2. On abort, want to know not only data address of
conflict, but also PC of initial access
— can get by with 12 bits/cache line—2.4% space OH
— alternatively, can record these bits in ALP instrumentation
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Simulation Results

= Speedup over HTM baseline with 16 threads
— MARSSx86 simulator w/ AMD ASF
— Staggered: 24% improvement (harmonic mean)
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