Conflict Reduction in Hardware Transactions Using Advisory Locks

Lingxiang Xiang and Michael L. Scott

TRANSACT 2015 "lightning talk" (full paper presented at SPAA this past Sunday)

Common pattern: transaction conflicts due to writes near the end:

Common pattern: transaction conflicts due to writes near the end:

Suppose we could overlap the nonconflicting parts?

Staggered Transactions

- Compiler identifies instructions that are likely to be initial accesses to a shared cache block
 - inserts instrumentation for optional activation
- Runtime system collects statistics on causes of aborts
- Policy chooses which "advisory locking point" (ALP),
 if any, to activate in future, and which lock to acquire
 - may be based on instruction pointer or data address
 - may promote to "parent" IP based on data structure analysis

Hardware Support

- To acquire an advisory lock, need nontransactional loads and stores
 - or transaction suspend/resume
- 2. On abort, want to know not only data address of conflict, but also PC of *initial access*
 - can get by with 12 bits/cache line—2.4% space OH
 - alternatively, can record these bits in ALP instrumentation

Simulation Results

- Speedup over HTM baseline with 16 threads
 - MARSSx86 simulator w/ AMD ASF
 - Staggered: 24% improvement (harmonic mean)

