Conflict Reduction in Hardware
Transactions Using Advisory Locks

Lingxiang Xiang and Michael L. Scott

UNIVERSITY of
& ROCHESTER

TRANSACT 2015 “lightning talk”
(full paper presented at SPAA this past Sunday)



Common pattern: transaction conflicts due to writes near
the end:

easy to conflict

tbegin | s tend
thdl = =X —
: abort : abort
thd2 ! — :
¢ abort :
thd3 X —

Staggered Transactions



Common pattern: transaction conflicts due to writes near
the end:

easy to conflict

tbegin | s tend
thdl = =X —
: abort : abort
thd2 ! — :
¢ abort :
thd3 X —

|
[
l
Suppose we could overlap the nonconflicting parts? :
[

advisory lock performa nce
thegin | L tend T win T
I
thdl | :_(waitlngl
thd2 ==
thd3 ' ~e

Staggered Transactions




Staggered Transactions

= Compiler identifies instructions that are likely to be
initial accesses to a shared cache block

— inserts instrumentation for optional activation

" Runtime system collects statistics on causes of aborts
= Policy chooses which “advisory locking point” (ALP),
if any, to activate in future, and which lock to acquire

— may be based on instruction pointer or data address

— may promote to “parent” IP based on data structure
analysis

Staggered Transactions 4



Hardware Support

1. To acquire an advisory lock, need nontransactional
loads and stores

— or transaction suspend/resume

2. On abort, want to know not only data address of
conflict, but also PC of initial access
— can get by with 12 bits/cache line—2.4% space OH
— alternatively, can record these bits in ALP instrumentation

Staggered Transactions



Simulation Results

= Speedup over HTM baseline with 16 threads
— MARSSx86 simulator w/ AMD ASF
— Staggered: 24% improvement (harmonic mean)

B HTM B AddrOnly ™ Staggered

1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
o o e’bo (\‘\ fo° ,2’,'0 9' 5 & <‘§\®
Qgp \,\\é & \,50\\ 2 & N\ N\ Q/@@

<

Staggered Transactions



