HTM in the wild

Konrad Lai
June 2015



Industrial Considerations for HTM

e Provide a clear benefit to customers
« Improve performance & scalability
- Ease programmability going forward

e Improve something common and fundamental
« Widely used critical section/lock-based primitives

e In an easy to use and deploy manner
« Minimal eco-system impact and effort
« Clean architectural boundaries

e While managing HW design and validation complexity

2 HTM in the Wild




HTM [Mechanism]

« 1993 HTM paper, Herlihy & Moss

2001 Lock elision, Rajwar & Goodman
2003 STM, TM [programming model], ...
2006 1st TRANSACT

Commercial Implementations

« 2011 IBM Blue Gene/Q

« 2012 IBM zEC12 mainframe

« 2013 Intel 4th generation Core (Haswell)

« 2014 IBM POWERS8

« 2015 Intel Xeon E7 v3, 4-way and 8-way SMP

1993 idea plus 2001 usage model
« Lock Elision
* Probabilistic lock free

2003 onward is still work in progress

3 HTM in the Wild




HTM Features Convergence

« Convergence over basic functionalities...
« Best effort HTM
 Leverage cache coherency protocol/cache(s)
« Strong Isolation
« Hardware buffering
« Reasonable buffer size
* No instruction count limit
« Checkpoint of Registers
« Implicitly Transactional

« Some differences...
« IBM BGQ supports thread speculation
« IBM zEC supports constrained transactions
« IBM POWERS supports suspend/resume
« IBM zEC/POWERS supports non-txn stores (but differently)
« IBM POWERS8 supports Recovery Only Transactions
« TX capacity varies medium to large

4 HTM in the Wild




Lemming Effect

XA : xbegin; test; xabort; (retry loop when lock is busy)
IL—U: Lock; critical section; Unlock (non-transactional execution)

T] - -AL-———————————— UXAXAXAXAXASSSSSSSsSssssssssLi—————————— UXAXA
T2 ——--AXAXAXAXAXAssslL-——————————— UXAXAXAXAXAXASSSSSSSSssssLi———
T3 ———AXAXAXAXAXASSSSSSSSSSSSsSSsSssL—————————-— UXAXAXAXAXASSSSSS

Persistent convoy of non-transactional execution

Elision is effectively disabled until all threads have serially released the
lock

— Disabled forever if at least 1 thread is holding the lock
Fix is simple

- Don’t retry until the lock is free

- Use well-known test-and-test-&-set pattern

Tl —-AL-——————————- UX———————
T2 ———-ASSSSSSSSSSSSsSX———————
T3 ———-ASSSSSSSSSSSSsSX———————

Appear in far too many refereed papers

S HTM in the Wild




Intel TSX Case Studies: Databases

e HPCA 2014
Improving In-Memory Database Index Performance with Intel®
Transactional Synchronization Extensions
- Tomas Karnagel, Roman Dementiev, Ravi Rajwar, Konrad Lai,
Thomas Legler, Benjamin Schlegel, Wolfgang Lehner (Intel, SAP AG
and TU Dresden)
e EuroSys 2014
Using Restricted Transactional Memory to Build a Scalable In-
Memory Database.
- Zhaoguo Wang, Hao Qian, Jinyang Li, Haibo Chen (Fudan
University, Shanghai Jiao Tong University, New York University)
e TDKE 2015
Scaling HTM-Supported Database Transactions to Many Cores
- Viktor Leis, Alfons Kemper, Thomas Neumann (TU Munchen)

6 HTM in the Wild




A Case Study: Two Index
Implementations

B+Tree Index
(a common index implementation)

Delta Storage Index
(from the SAP HANA® database)

25 20
20 / /
/ 15
S 15 ——no lock S // ——no lock
o o
] / ) o 10
aé_ 10 / -#-Spin Lock :.J_ / RW Lock
RW Lock -#-Spin Lock
ST 4 1/
0 rem—m - - o e —a
0 20 0 20

7 HTM in the Wild



Case Study: Index Tree

Implementations
e SAP HANA Database

— Read optimized column store database system

e Two index implementations

— B+Tree [Data Structure]
— Common implementation
- Smaller foot print BHNN.Z HENN 7 EEE 2 HANN 2 BAEE 2 HEEN
— Delta Storage Index (B+Tree with a Dictionary)
— Complex data structure with additional structures
- Large foot print

Column Dictionary Delta Storage Index
Lock protect access " P
. 7 1 | San Francisco 1@ 7ol 7
— Reader-Writer : 2 | Santa Clara //‘ ?\q\
3 3 San Jose
— i 1 1 Fresno o S = S - I —
Spin Lock 0 5 | Berkeley Lofs[ [ ®=d4[s] [ B=97[¢] [ B=W13[2] [
8 6 Sacramento
2 7 Palo Alto

8 Oakland

8 HTM in the Wild




Initial Results: B+ Tree

e Intel TSX provides significant gains with no application
changes

— Outperforms RW lock on read-only queries
— Significant gains with increasing inserts (6x for 50%)

10

9

8 \

7 =S
S » —X
o 6
a =>=No Concurrency Control
w 5
S Spin Lock Elision w/ TSX
‘?‘: 4 \ -3-RW Lock

3 ‘\ ——Spin Lock

2

1 ¢0—o—oe ‘ﬂ:L.~......:;;;EEE=====-1.;_ —m

0 T T T T 1

0 20 40 60 80 100
insert operations (%) Intel® Core™ i7 processor with 4 physical cores / 8 logical cores

(HT)

9 HTM in the Wild




Initial Results: Delta Storage Index

e Intel TSX provides gains with no application changes
— Different profile as compared to B+Tree

— Spin lock w/ Intel TSX better than RW Lock when > 5% insert
— Significant gap as compared to no concurrency control

e Baseline should implement good retry policy on aborts

7

6
i ?"\ : 7:
4 *‘TX\ =#=No Concurrency Control

=<Spin Lock Elision w/ TSX

\ Spin Lock Elision w/ TSX-no-retries

2 =#-RW Lock
1 L_.._F :x.: = —o—Spin lock
0

3

relative performance

O T T T T 1
20 40 60 80 100 | | _
insert operations (%) érgcrzls@k(ﬁ%rem i7 processor with 4 physical cores / 8 logical

10 HTM in the Wild




Software Transformations

e Capacity Aborts

— Node/Leaf Search Scan
— Causes O(n) random lookups

— Transformation - Binary Search
— Causes O(log(n)) random lookups

e Data Conflicts
— Single dictionary
— Global memory allocator

— Transformation — Multiple Dictionaries, per-thread/core
allocators

Well Known Transformations

11 HTM in the Wild




Tuned Results: Delta Storage Index

e Intel TSX provides significant gains with transformations

— Restores read-only query performance

— Spin lock w/ Intel TSX significantly outperforms RW lock
(5x for 50% inserts)

— Close to 'No Concurrency Control”

.. f\:‘:\\ : -

: \

©

§ 4 - —  —#No Concurrency Control

..5 \ =>Spin Lock Elision w/ TSX-R (tuned)
o

_g 3 \ o Spin Lock Elision w/ TSX (previous)
% —B-RW Lock

=o—Spin lock

0 20 40 60 80 100

12 HTM in the Wild




13

4 way Intel Xeon E7 v3 w/wo TSX

Incremental performance gains in transactional processing when running SAP
HANA on the Intel Xeon processor E7 v3 family with Intel® TSX enabled

Baseline® Configuration 1 Configuration 2 Configuration 3

Intel® Xeon® processor R} Intel® Xeon® processor Intel® Xeon® processor

E7 V2 WAL E7 v3

family family without family
Intel® TSX enabled + Intel® TSX enabled

SAP HANA® SAP HANA® SAP HANA®

SPS 09 SPS 09 SPS 09

Improved transactions /l . 8 Xﬁl 2 .7>(JI 6><JI

per minute (TPM) : more TPM more TPM more TPM

Figure 1. Upgrading to the Intel® Xeon® processor E7 v3 family and SAP HANA* SP5 09 (S-OLTP stress test lab results) provides incremental
performance gains.

HTM in the Wild



TUM HyPer

e Breakup DB Txn
—Small HTM txn

eHTM TXxn
—Sync access to DS

e Use timestamp to
“commit” DB Txn

| database transaction

conflict detection: read/write sets via Gmestamps
elided lock: serial execution

request a new imestamp, record safe imestamp

LA

HTM transaction
conflict detection: read'write sets in hardwan
elided lock: latch

times ang conflict

- single tuple access
- verify/update tuple imestamps

[/

N g,

HTM transaction
conflict detection: meadtwrite seils in hardwan:
elided lock: latch

L

~ single tuple acoess
 venfy/update tuple imestamps

release timestamp, update safe timestamp

Figure 7. Transforming database tramsactions inio HTM ansactions

14 HTM in the Wild




15

TUM HyPer Result - 2 way Xeon EP

transactions per second

400,000

300,000

200,000 -

100,000

—e— partitioned

——HTM

— optimistic
serial

——2PL

multiprogramming level (threads)

Figure 18. Scalability of TPC-C on desktop system

HTM in the Wild

transactions per second

1,000,000

800,000 -

600,000

400,000

200,000

—— partitioned

—— HTM

—— optimistic
serial

—— 2PL

— Silo

T
14 21 28

multiprogramming level (threads)

Figure 20. Scalability of TPC-C on server system




TM Programming Model (C++TM)

¢ s this a research toy?
— No - not even a toy as few play with it
— Take this out of the glass cage, and play with it
— Should we ban or boycott STAMP as workload ;-)

e Did not address issues raised in 2005
— Conditional synchronization
- Open and/or closed nesting
— Escape actions
— Inter-operate with other paradigms, e.g. locks

e [s the current set sufficient?
— Need broad usage experience
— Does this limit holistic performance?

e New issue — TM and persistent memory

16 HTM in the Wild




17

Better support for critical section?

e Even C++'11 is not good enough

e Tight definition of critical section (or sync block)
— Not just a coding convention
— Enable efficient application of lock elision
- Enable other transformations, like Hybrid Lock Elision
e How about adding lock declaration to C++TM
synchronization block?
- Semi-automatic code refactoring needed
— Could be stepping stone to transactions
e Do we need cleaner threading library?
— Pthread has high overhead

HTM in the Wild




