
HTM in the wild

Konrad Lai
June 2015

2 2 HTM in the Wild

Industrial Considerations for HTM

• Provide a clear benefit to customers

• Improve performance & scalability

• Ease programmability going forward

• Improve something common and fundamental

• Widely used critical section/lock-based primitives

• In an easy to use and deploy manner

• Minimal eco-system impact and effort

• Clean architectural boundaries

• While managing HW design and validation complexity

3 3 HTM in the Wild

HTM [Mechanism]

• 1993 HTM paper, Herlihy & Moss
• 2001 Lock elision, Rajwar & Goodman
• 2003 STM, TM [programming model], …
• 2006 1st TRANSACT

• Commercial Implementations

• 2011 IBM Blue Gene/Q
• 2012 IBM zEC12 mainframe
• 2013 Intel 4th generation Core (Haswell)
• 2014 IBM POWER8
• 2015 Intel Xeon E7 v3, 4-way and 8-way SMP

• 1993 idea plus 2001 usage model
• Lock Elision
• Probabilistic lock free

• 2003 onward is still work in progress

4 4 HTM in the Wild

HTM Features Convergence

• Convergence over basic functionalities…
• Best effort HTM
• Leverage cache coherency protocol/cache(s)
• Strong Isolation
• Hardware buffering
• Reasonable buffer size
• No instruction count limit
• Checkpoint of Registers
• Implicitly Transactional

• Some differences…
• IBM BGQ supports thread speculation
• IBM zEC supports constrained transactions
• IBM POWER8 supports suspend/resume
• IBM zEC/POWER8 supports non-txn stores (but differently)
• IBM POWER8 supports Recovery Only Transactions
• TX capacity varies medium to large

5 5 HTM in the Wild

Lemming Effect

XA : xbegin; test; xabort; (retry loop when lock is busy)

L—U: Lock; critical section; Unlock (non-transactional execution)

T1 --AL------------UXAXAXAXAXAssssssssssssssssL----------UXAXA

T2 ---AXAXAXAXAXAsssL------------UXAXAXAXAXAXAssssssssssssL---

T3 ---AXAXAXAXAXAsssssssssssssssssL----------UXAXAXAXAXAssssss

Persistent convoy of non-transactional execution

Elision is effectively disabled until all threads have serially released the
lock

– Disabled forever if at least 1 thread is holding the lock

Fix is simple

– Don’t retry until the lock is free

– Use well-known test-and-test-&-set pattern
T1 --AL------------UX-------

T2 ---AsssssssssssssX-------

T3 ---AsssssssssssssX-------

Appear in far too many refereed papers

6 6 HTM in the Wild

Intel TSX Case Studies: Databases

• HPCA 2014

Improving In-Memory Database Index Performance with Intel®
Transactional Synchronization Extensions
- Tomas Karnagel, Roman Dementiev, Ravi Rajwar, Konrad Lai,
Thomas Legler, Benjamin Schlegel, Wolfgang Lehner (Intel, SAP AG
and TU Dresden)

• EuroSys 2014
Using Restricted Transactional Memory to Build a Scalable In-
Memory Database.
- Zhaoguo Wang, Hao Qian, Jinyang Li, Haibo Chen (Fudan
University, Shanghai Jiao Tong University, New York University)

• TDKE 2015
Scaling HTM-Supported Database Transactions to Many Cores
- Viktor Leis, Alfons Kemper, Thomas Neumann (TU Munchen)

7 7 HTM in the Wild

A Case Study: Two Index
Implementations

• Read-Only Queries on Dual Socket Intel® Xeon® E5-2680 Server

B+Tree Index

(a common index implementation)

Delta Storage Index

(from the SAP HANA® database)

0

5

10

15

20

0 20

sp
e

e
d

u
p

no lock

RW Lock

Spin Lock

0

5

10

15

20

25

0 20

sp
e

e
d

u
p

no lock

Spin Lock

RW Lock

Hidden Scalability Impact of Atomic Read-Modify-Write
Operations

8 8 HTM in the Wild

• SAP HANA Database

– Read optimized column store database system

• Two index implementations

– B+Tree [Data Structure]

– Common implementation

– Smaller foot print

– Delta Storage Index (B+Tree with a Dictionary)

– Complex data structure with additional structures

– Large foot print

Lock protect access

– Reader-Writer

– Spin Lock

Case Study: Index Tree
Implementations

9 9 HTM in the Wild

Initial Results: B+Tree

• Intel TSX provides significant gains with no application
changes

– Outperforms RW lock on read-only queries

– Significant gains with increasing inserts (6x for 50%)

Intel® Core™ i7 processor with 4 physical cores / 8 logical cores
(HT)

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

re
la

ti
ve

 s
p

e
e

d
u

p

insert operations (%)

No Concurrency Control

Spin Lock Elision w/ TSX

RW Lock

Spin Lock

10 10 HTM in the Wild

Initial Results: Delta Storage Index

• Intel TSX provides gains with no application changes

– Different profile as compared to B+Tree

– Spin lock w/ Intel TSX better than RW Lock when > 5% insert

– Significant gap as compared to no concurrency control

• Baseline should implement good retry policy on aborts

Intel® Core™ i7 processor with 4 physical cores / 8 logical
cores (HT)

0

1

2

3

4

5

6

7

0 20 40 60 80 100

re
la

ti
ve

 p
e

rf
o

rm
an

ce

insert operations (%)

No Concurrency Control

Spin Lock Elision w/ TSX

Spin Lock Elision w/ TSX−no−retries

RW Lock

Spin lock

11 11 HTM in the Wild

Software Transformations

• Capacity Aborts

– Node/Leaf Search Scan

– Causes O(n) random lookups

– Transformation – Binary Search

– Causes O(log(n)) random lookups

• Data Conflicts

– Single dictionary

– Global memory allocator

– Transformation – Multiple Dictionaries, per-thread/core
allocators

Well Known Transformations

12 12 HTM in the Wild

0

1

2

3

4

5

6

7

0 20 40 60 80 100

re
la

ti
ve

 p
e

rf
o

rm
an

ce

insert operations (%)

No Concurrency Control

Spin Lock Elision w/ TSX−R (tuned)

Spin Lock Elision w/ TSX (previous)

RW Lock

Spin lock

Tuned Results: Delta Storage Index

• Intel TSX provides significant gains with transformations

– Restores read-only query performance

– Spin lock w/ Intel TSX significantly outperforms RW lock
(5x for 50% inserts)

– Close to ‘No Concurrency Control”

13 13 HTM in the Wild

4 way Intel Xeon E7 v3 w/wo TSX

14 14 HTM in the Wild

TUM HyPer

•Breakup DB Txn

–Small HTM txn

•HTM Txn

–Sync access to DS

•Use timestamp to
“commit” DB Txn

15 15 HTM in the Wild

TUM HyPer Result – 2 way Xeon EP

16 16 HTM in the Wild

TM Programming Model (C++TM)

• Is this a research toy?

– No – not even a toy as few play with it

– Take this out of the glass cage, and play with it

– Should we ban or boycott STAMP as workload ;-)

• Did not address issues raised in 2005

– Conditional synchronization

– Open and/or closed nesting

– Escape actions

– Inter-operate with other paradigms, e.g. locks

• Is the current set sufficient?

– Need broad usage experience

– Does this limit holistic performance?

• New issue – TM and persistent memory

17 17 HTM in the Wild

Better support for critical section?

• Even C++’11 is not good enough

• Tight definition of critical section (or sync block)

– Not just a coding convention

– Enable efficient application of lock elision

– Enable other transformations, like Hybrid Lock Elision

• How about adding lock declaration to C++TM
synchronization block?

– Semi-automatic code refactoring needed

– Could be stepping stone to transactions

• Do we need cleaner threading library?

– Pthread has high overhead

