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Industrial Considerations for HTM

e Provide a clear benefit to customers
« Improve performance & scalability
- Ease programmability going forward

e Improve something common and fundamental
« Widely used critical section/lock-based primitives

e In an easy to use and deploy manner
« Minimal eco-system impact and effort
« Clean architectural boundaries

e While managing HW design and validation complexity
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HTM [Mechanism]

« 1993 HTM paper, Herlihy & Moss

2001 Lock elision, Rajwar & Goodman
2003 STM, TM [programming model], ...
2006 1st TRANSACT

Commercial Implementations

« 2011 IBM Blue Gene/Q

« 2012 IBM zEC12 mainframe

« 2013 Intel 4th generation Core (Haswell)

« 2014 IBM POWERS8

« 2015 Intel Xeon E7 v3, 4-way and 8-way SMP

1993 idea plus 2001 usage model
« Lock Elision
* Probabilistic lock free

2003 onward is still work in progress
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HTM Features Convergence

« Convergence over basic functionalities...
« Best effort HTM
 Leverage cache coherency protocol/cache(s)
« Strong Isolation
« Hardware buffering
« Reasonable buffer size
* No instruction count limit
« Checkpoint of Registers
« Implicitly Transactional

« Some differences...
« IBM BGQ supports thread speculation
« IBM zEC supports constrained transactions
« IBM POWERS supports suspend/resume
« IBM zEC/POWERS supports non-txn stores (but differently)
« IBM POWERS8 supports Recovery Only Transactions
« TX capacity varies medium to large
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Lemming Effect

XA : xbegin; test; xabort; (retry loop when lock is busy)
IL—U: Lock; critical section; Unlock (non-transactional execution)

T] - -AL-———————————— UXAXAXAXAXASSSSSSSsSssssssssLi—————————— UXAXA
T2 ——--AXAXAXAXAXAssslL-——————————— UXAXAXAXAXAXASSSSSSSSssssLi———
T3 ———AXAXAXAXAXASSSSSSSSSSSSsSSsSssL—————————-— UXAXAXAXAXASSSSSS

Persistent convoy of non-transactional execution

Elision is effectively disabled until all threads have serially released the
lock

— Disabled forever if at least 1 thread is holding the lock
Fix is simple

- Don’t retry until the lock is free

- Use well-known test-and-test-&-set pattern

Tl —-AL-——————————- UX———————
T2 ———-ASSSSSSSSSSSSsSX———————
T3 ———-ASSSSSSSSSSSSsSX———————

Appear in far too many refereed papers
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Intel TSX Case Studies: Databases

e HPCA 2014
Improving In-Memory Database Index Performance with Intel®
Transactional Synchronization Extensions
- Tomas Karnagel, Roman Dementiev, Ravi Rajwar, Konrad Lai,
Thomas Legler, Benjamin Schlegel, Wolfgang Lehner (Intel, SAP AG
and TU Dresden)
e EuroSys 2014
Using Restricted Transactional Memory to Build a Scalable In-
Memory Database.
- Zhaoguo Wang, Hao Qian, Jinyang Li, Haibo Chen (Fudan
University, Shanghai Jiao Tong University, New York University)
e TDKE 2015
Scaling HTM-Supported Database Transactions to Many Cores
- Viktor Leis, Alfons Kemper, Thomas Neumann (TU Munchen)
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A Case Study: Two Index
Implementations

B+Tree Index
(a common index implementation)

Delta Storage Index
(from the SAP HANA® database)
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Case Study: Index Tree

Implementations
e SAP HANA Database

— Read optimized column store database system

e Two index implementations

— B+Tree [Data Structure]
— Common implementation
- Smaller foot print BHNN.Z HENN 7 EEE 2 HANN 2 BAEE 2 HEEN
— Delta Storage Index (B+Tree with a Dictionary)
— Complex data structure with additional structures
- Large foot print
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Initial Results: B+ Tree

e Intel TSX provides significant gains with no application
changes

— Outperforms RW lock on read-only queries
— Significant gains with increasing inserts (6x for 50%)
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Initial Results: Delta Storage Index

e Intel TSX provides gains with no application changes
— Different profile as compared to B+Tree

— Spin lock w/ Intel TSX better than RW Lock when > 5% insert
— Significant gap as compared to no concurrency control

e Baseline should implement good retry policy on aborts
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Software Transformations

e Capacity Aborts

— Node/Leaf Search Scan
— Causes O(n) random lookups

— Transformation - Binary Search
— Causes O(log(n)) random lookups

e Data Conflicts
— Single dictionary
— Global memory allocator

— Transformation — Multiple Dictionaries, per-thread/core
allocators

Well Known Transformations
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Tuned Results: Delta Storage Index

e Intel TSX provides significant gains with transformations

— Restores read-only query performance

— Spin lock w/ Intel TSX significantly outperforms RW lock
(5x for 50% inserts)

— Close to 'No Concurrency Control”
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4 way Intel Xeon E7 v3 w/wo TSX

Incremental performance gains in transactional processing when running SAP
HANA on the Intel Xeon processor E7 v3 family with Intel® TSX enabled

Baseline® Configuration 1 Configuration 2 Configuration 3

Intel® Xeon® processor R} Intel® Xeon® processor Intel® Xeon® processor

E7 V2 WAL E7 v3

family family without family
Intel® TSX enabled + Intel® TSX enabled

SAP HANA® SAP HANA® SAP HANA®

SPS 09 SPS 09 SPS 09

Improved transactions /l . 8 Xﬁl 2 .7>(JI 6><JI

per minute (TPM) : more TPM more TPM more TPM

Figure 1. Upgrading to the Intel® Xeon® processor E7 v3 family and SAP HANA* SP5 09 (S-OLTP stress test lab results) provides incremental
performance gains.
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TUM HyPer

e Breakup DB Txn
—Small HTM txn

eHTM TXxn
—Sync access to DS

e Use timestamp to
“commit” DB Txn

| database transaction

conflict detection: read/write sets via Gmestamps
elided lock: serial execution

request a new imestamp, record safe imestamp
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HTM transaction
conflict detection: read'write sets in hardwan
elided lock: latch

times ang conflict

- single tuple access
- verify/update tuple imestamps
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HTM transaction
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L
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Figure 7. Transforming database tramsactions inio HTM ansactions
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TUM HyPer Result - 2 way Xeon EP
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Figure 18. Scalability of TPC-C on desktop system
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Figure 20. Scalability of TPC-C on server system




TM Programming Model (C++TM)

¢ s this a research toy?
— No - not even a toy as few play with it
— Take this out of the glass cage, and play with it
— Should we ban or boycott STAMP as workload ;-)

e Did not address issues raised in 2005
— Conditional synchronization
- Open and/or closed nesting
— Escape actions
— Inter-operate with other paradigms, e.g. locks

e [s the current set sufficient?
— Need broad usage experience
— Does this limit holistic performance?

e New issue — TM and persistent memory
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Better support for critical section?

e Even C++'11 is not good enough

e Tight definition of critical section (or sync block)
— Not just a coding convention
— Enable efficient application of lock elision
- Enable other transformations, like Hybrid Lock Elision
e How about adding lock declaration to C++TM
synchronization block?
- Semi-automatic code refactoring needed
— Could be stepping stone to transactions
e Do we need cleaner threading library?
— Pthread has high overhead
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