
The Correctness Criterion for Deferred Update Replication

Tadeusz Kobus, Maciej Kokociński, Paweł T. Wojciechowski
Institute of Computing Science,

Poznan University of Technology, Poland
{Tadeusz.Kobus,Maciej.Kokocinski,Pawel.T.Wojciechowski}@cs.put.edu.pl

Abstract
In this paper we propose update-real-time opacity, a new correct-
ness criterion based on opacity, that precisely describes the guaran-
tees offered by Deferred Update Replication (DUR) protocol. We
specify update-real-time opacity as a member of the � opacity fam-
ily of properties, which we also introduce in this paper. We provide
additional properties (as part of the � opacity family), which relax
to various extent the transaction order requirements of opacity, in
order to embrace a wider class of strongly consistent transactional
systems. In the paper we discuss the relation between the mem-
bers of � opacity and other popular correctness criteria used in the
context of transactional systems.

Keywords correctness, deferred update replication, opacity

1. Introduction
Replication is an established technique used for building depend-
able and highly available services. In a replicated system, a service
is deployed on multiple machines whose actions are coordinated,
so that a consistent state is maintained across all the service repli-
cas (processes). In this way the clients, that can issue requests to
any of the replicas, are served despite of (partial) system failures.

Deferred Update Replication (DUR) [5] is one of the most
widely employed protocols for concurrency control in database and
distributed transactional memory (DTM) systems that use replica-
tion for achieving high availability.1 In DUR, every request sent
by a client to any of the replicas, is executed by the replica that
received it as an atomic transaction, and then, the resulting up-
dates are broadcast to all processes, so they can update their state
accordingly. However, upon receipt of a message with a transac-
tion’s update, the processes do not update their state right away.
In order to ensure that consistency is preserved across the system,
all processes (independently) execute a certification procedure that
checks if the transaction read any stale data. If so it has to be rolled
back and restarted. Since all updates are delivered in the same order
(by using, e.g., a Total Order Broadcast protocol [7]), all processes

1 In this paper, we assume DUR based on Total Order Broadcast, as in [5].
However, our results do not depend on the way DUR is implemented. For a
broader discussion on various implementations of DUR, see Section 2.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TRANSACT ’15, July 15–16, 2015, Portland, Oregon, USA.
Copyright c© 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

change their state in the same way. Since read-only transactions
do not modify the system’s state in any way, they do not require
a distributed certification. Instead, only the process that executed a
read-only transaction, certifies it to ensure that it has not read any
stale data.

Opacity [9] [10] is often a desired property for transactional
systems. Systems that satisfy opacity guarantee that no transaction
(no matter whether live, aborted or committed) ever reads stale
or inconsistent data. DUR, in fact, guarantees that no transaction
ever reads inconsistent data, but allows live, aborted and read-only
transactions to observe stale data.

To better understand why DUR breaks opacity, consider a sys-
tem consisting of a few replicas (servers), where one of them is
lagging behind. Client c1 interacts with an up-to-date replica, while
client c2 interacts with the lagging one. Now, suppose that c1 exe-
cutes an update request (an updating transaction) and receives feed-
back from its replica. This update does not reach c2’s replica be-
cause of the lag. If the two clients communicate with each other, c2
may notice it is missing an update, or even worse, it may not notice,
but still take actions which depend on the update. Indeed, if c2 starts
a new transaction on its replica, contrary to its expectations, it will
not be able to observe the update. If the transaction undergoes cer-
tification it will be aborted, but still up to some point in time (possi-
bly until commit) it will execute on a stale snapshot.2 Moreover, if
the transaction executed by c2 is a query (a read-only transaction),
the transaction may even commit (no inter-process synchronization
is required for read-only transactions). This clearly stands in con-
trast with the real-time order property guaranteed by opacity, i.e. if
one transaction precedes another, all its effects must be visible to
the latter. This requirement of opacity is usually difficult and costly
to ensure in a distributed environment. The question is, then, which
property can we use to properly describe what DUR actually guar-
antees?

Naturally, DUR guarantees serializability [18], a much weaker
property compared to opacity. Serializability only requires that the
execution of transactions is equivalent to some serial execution of
all committed transactions. It does not impose any limitations on
the order in which the transactions are serialized. In particular, in
a serializable execution it is possible for two transactions executed
sequentially by the same process to appear as if they were executed
in a different order. Moreover serializability does not provide any
safety guarantees to live or aborted transactions.

In this paper we propose update-real-time opacity, a correctness
criterion based on opacity, which precisely describes the guarantees
offered by DUR. We present update-real-time opacity as a member
of the � opacity family of properties, that we also introduce in this
paper. By providing a set of closely related properties that relax
transaction order requirements of opacity to various extent, we are

2 To prevent live transactions from reading stale data, the system would have
to run a distributed consensus round before the start of each transaction.

able to embrace a wider class of strongly consistent transactional
systems. We show the relation between the properties and discuss
how different order requirements impact the perception of the sys-
tem’s behaviour from the clients’ point of view. We also prove that
DUR relying on TOB satisfies update-real-time opacity.

The rest of the paper is structured as follows. In Section 2 we
discuss the work relevant most closely to ours. Then, in Section 3
we provide the formal definition of the � opacity family of proper-
ties. Next, in Section 4 we briefly describe DUR and show why it
guarantees update-real-time opacity. Finally, we conclude in Sec-
tion 5.

2. Related Work
DUR, which we explain in more detail in Section 4, is the most
basic protocol for achieving multi-primary-backup replication [5].
Various flavours of DUR are implemented in several commercial
database systems, including Ingress, MySQL Cluster and Oracle.
These implementations use 2PC [1] as the atomic commitment
protocol. In this paper, we consider DUR based on Total Order
Broadcast (TOB) [7]. This approach is advocated by several authors
because of its nonblocking nature and predictable behaviour (see
[2, 19, 20] among others). Most recently, it has been implemented
in D2STM [6] and Paxos STM [23] [15]. It has also been used
as part of the coherence protocols of S-DUR [22] and RAM-DUR
[21].

There are a number of optimistic replication protocols that have
their roots in DUR, e.g., Postgres-R [14] and Executive DUR [17].
The differences between these systems lie not in the general ap-
proach to processes synchronization, but in the way the transaction
certification is handled. Both of these protocols, similarly to DUR,
certify read-only transactions without inter-process synchroniza-
tions. It means that they are not opaque. However, one can show
that they guarantee update-real-time opacity, similarly to DUR.

Over the years a multitude of correctness criteria have been de-
fined for strongly consistent transactional systems. Serializability
is the most basic of them all [18]. It specifies that all committed
transactions are executed as if they were executed sequentially by
a single process. Strict serializability [18] additionally requires that
the real-time order of transaction execution is respected (i.e. the
execution order of non-overlapping committed transactions is pre-
served). Update serializability [12] is very similar to serializability,
but allows read-only transactions to observe different (but still le-
gal) histories of the already committed transactions.

All three correctness criteria mentioned above regard only com-
mitted transactions and say nothing about live or aborted transac-
tions. As briefly discussed earlier, sometimes this is not enough.
Therefore, new correctness criteria emerged that formalize the be-
haviour of all transactions in the system, including live transactions.
Although some of them, such as recoverability, avoiding cascading
aborts or strictness [1] specify the behaviour of read and write for
both live and completed transactions, but they say nothing about
global ordering of transactions (unlike serializability and proper-
ties similar to it). This, in turn, limits their usefulness in the context
of strongly consistent transactional systems. Therefore, our atten-
tion focuses on properties that maintain (in most cases) a global
serialization for all transactions.3

The following properties maintain a global serialization only
for some of the transactions. Extended update serializabilty [12]
ensures update serializability for both committed and live trans-
actions. Therefore, it features a global serialization for all the up-

3 Interestingly, the majority of correctness criteria discussed below were for-
mulated with a local environment in mind, where communication between
processes is relatively inexpensive. Therefore they are not suitable for using
in a distributed environment.

dating transactions (read-only transactions may observe a differ-
ent serialization). Virtual world consistency [13] allows an aborted
transaction to observe a different (but still legal) history.

Similarly as extended update serializabilty extends update seri-
alizability, opacity [9] [10] extends strict serializability to guaran-
tee live transactions to always read a consistent state. It features a
global serialization of all transactions. Rigorousness [4], TMS2 [8]
and DU-opacity [3] offer even stronger guarantees. They restrict
some particular sets of histories compared to opacity: rigorousness
and TMS2 impose stronger requirements on the ordering of concur-
rent transactions, while DU-opacity explicitly requires that no read
operation ever reads from a transaction that is not commit-pending
or committed. Moreover, all these three properties are defined only
in a model that assumes read-write registers. TMS1 [8] was pro-
posed to slightly relax opacity. It allows not only each transaction,
but even each operation, to observe a different view of past transac-
tions. The possible histories are, however, restricted by a few con-
ditions, which enforce quite strong consistency (despite lack of a
global serialization). All of the properties mentioned above, includ-
ing opacity, require that the real-time order of transaction execution
is respected, similarly as in case of strict-serializability.

Update-real-time opacity proposed in this paper can be seen as a
blend of various features of the above properties. On one hand it re-
sembles (extended) update serializability, because it differentiates
between updating and read-only transactions. On the other hand, it
guarantees that all transactions (regardless of their type or current
state of execution), share a common equivalent history of transac-
tions’ execution, as in opacity. However, in update-real-time opac-
ity only committed updating transactions need to respect real-time
order of transaction execution. Live and read-only transactions can
operate on a stale snapshot of shared objects.

The � opacity family of properties currently features six mem-
bers, ordered by the strength of offered guarantees. The strongest
property of them all is real-time opacity which is equivalent to
opacity defined in [10]. Commit-real-time opacity allows live and
aborted transactions to read stale (but still consistent) data. Write-
real-time opacity futher relaxes real-time order guarantees on trans-
actions that are known a priori to be read-only. Update-real-time
differs from write-real-time opacity by allowing all read-only trans-
actions to break real-time order. Program order opacity requires
real-time order only for transactions executed by the same process.
In this sense, it is similar to virtual time opacity [13]. However,
unlike virtual time opacity, program order opacity does not require
that each live transaction recognizes its causal past across all pro-
cesses. Finally, arbitrary order opacity makes no assumptions on
the relative ordering of transactions. In this respect, it is similar to
serializability. However, it also ensures that live transactions always
observe a consistent view of the system’s state.

3. Opacity
We follow the formal framework of opacity from [10], but we
extend it to accommodate several new ordering relations. We also
borrow some definitions from [11].

We consider a system consisting of a finite set P = {p1, p2, ...,
pn} of n processes. Processes are independent and execute steps
in parallel (or alternately). The system manages a set X =
{x1, x2, ...} of transactional objects called t-objects. Each t-object
has a unique identity and a type. Each type is defined by a sequen-
tial specification that consists of:

• a set Q of possible states for an object,
• an initial state q0 ∈ Q,
• a set INV of operations that can be applied to an object,
• a set RES of possible responses an object can return, and

• a transition relation δ ⊆ Q× INV × RES ×Q.

This specification describes how the object behaves if it is accessed
by one operation at a time. If (q, op, res, q′) ∈ δ, it means that a
possible result of applying operation op to an object in state q is
that the object moves to state q′ and returns the response res to the
process that invoked op. For simplicity, we assume that operation
arguments are encoded in the operation itself.

We say that an operation op is updating for a given state q ∈ Q,
if and only if there exists (q, op, res, q′) ∈ δ, such that q 6= q′. We
say that op is read-only, if and only if there does not exist a state q
for which op is updating.

We distinguish a set T = {T1, T2, ...} of transactions. A trans-
action is an abstract notion fully controlled by some process. For
convenience, we say that a transaction Tk performs some action
when a given process executes this action as part of the trans-
action Tk. T-objects can only be accessed through the TM inter-
face (see below) and by any transaction Tk. A transaction that
only executes read-only operations is called a read-only transac-
tion. Otherwise, we say that it is an updating transaction. In gen-
eral, it is impossible to tell whether a transaction is read-only be-
fore it finishes its execution. However, we distinguish a special
class of transactions called declared read-only (DRO), which are
known a priori to be read-only (they are allowed to execute only
read-only operations on t-objects). Then, for any such transaction
Tk, we write DRO(Tk) = true. Every transaction Tk for which
DRO(Tk) = true is read-only, but the opposite is not necessarily
true.

We consider a TM interface consisting of the following opera-
tions:

• texec(Tk, x.op)→ {v,Ak}which executes an operation op on
a t-object x, of some type T = (Q, q0, INV ,RES , δ), within a
transaction Tk and as a result produces a return value v ∈ RES
or the special value Ak;
• tryC (Tk) → {Ak, Ck} which attempts to commit a transac-

tion Tk, and returns the special values Ak or Ck;
• tryA(Tk) → Ak which aborts a transaction Tk and always

returns Ak.

The special valueAk, that can be returned by all the operations,
indicates that the transaction Tk has been aborted. The value Ck

returned by the operation tryC (Tk) means that Tk had indeed
committed. For any t-object of type T = (Q, q0, INV ,RES , δ),
Ak /∈ RES , and Ck /∈ RES . A response event with a return value
Ak or Ck is called, respectively, an abort event or commit event (of
transaction Tk). The commit or abort events of a transaction Tk are
always the last events for Tk.

When a process pi executes a TM operation op, it invokes
an event inv i(op) and expects a response event respi(v). A pair
of such events is called a (completed) operation execution and is
denoted by op →i v. An invocation event that is not followed by a
response event is called a pending operation execution.

We model the system execution as a (totally ordered) sequence
of events called a history. Naturally, histories respect program order
(events executed by the same process are ordered according to
their execution order), and also causality between events across
processes (if two events executed in the system are causally related,
one will precede the other in the history). Events that happen in
parallel (in separate processes), and that are not causally dependent,
can appear in a history in an arbitrary order.4 For any history

4 An alternative approach to model the system execution would be to em-
ploy partially ordered sets (or simply posets). In fact, this approach is equiv-
alent to ours, because a poset can be represented by a set of totally ordered
histories (and we always analyze all the possible histories a given system

H , we denote by H|pi the restriction of H to events issued or
received by the process pi. Similarly, we denote by H|Tk the
restriction of H to events concerning Tk, i.e. invocation events
of the operations texec(Tk, x.op), tryC (Tk), tryA(Tk) or their
corresponding response events (for any t-object x and operation
op). We say that a transaction Tk is in H if H|Tk is not empty.
Let x be any t-object. We denote by H|x the restriction of H to
events concerning x, i.e. the invocation events of any operation
texec(Tk, x.op) and their corresponding response events (for any
transaction Tk and operation op on x).

A history H is said to be well-formed if, for every process
pi, H|pi is a (finite or infinite) sequence of operation executions,
possibly ending with a pending operation execution. We consider
only well-formed histories.

Let H be any history. We say that a transaction Tk is committed
in H , if H|Tk contains operation execution tryC (Tk)→i Ck (for
some process pi). We say that transaction Tk is aborted in H , if
H|Tk contains response event respi(Ak) from any TM operation
(for some process pi). If an aborted transaction Tk contains an
invocation of the operation tryA(Tk) it is said to be aborted on
demand, otherwise we say that transaction Tk is forcibly aborted in
H . A transaction Tk in H that is committed or aborted is called
completed. A transaction that is not completed is called live. A
transaction Tk is said to be commit-pending in a history H , if
H|Tk has a pending operation tryC (Tk) (Tk invoked the operation
tryC (Tk), but has not received any response from this operation).

Let H be any history. We say that H is completed if every
transaction Tk in H is completed. A completion of a history H
is any (well-formed) complete history H ′ such that:

1. H is a prefix of H ′, and

2. for every transaction Tk inH , sub-historyH ′|Tk is equal to one
of the following histories:
• H|Tk, when Tk is completed, or
• H|Tk· 〈tryA(Tk) →i Ak〉, for some process pi, when Tk

is live and there is no pending operation in H|Tk, or
• H|Tk· 〈respi(Ak)〉, when Tk is live and there is a pending

operation in H|Tk invoked by some process pi, or
• H|Tk· 〈respi(Ck)〉, when Tk is commit-pending for some

process pi.

Let Ti and Tj be any two transactions in some history H ,
where Ti is completed. We define the following order relations on
transactions in H:

• real-time order ≺r
H — we say that Ti ≺r

H Tj (read as Ti

precedes Tj) if the last event of Ti precedes the first event of
Tj . We call ≺r

H the real-time order relation in H;
• commit-real-time order ≺c

H — we say that Ti ≺c
H Tj if (1)

Ti ≺r
H Tj , and (2) both Ti and Tj are committed, or both Ti

and Tj are executed by the same process pi. We call ≺c
H the

commit-real-time order relation in H;
• write-real-time order ≺w

H — we say that Ti ≺w
H Tj if (1)

Ti ≺r
H Tj , and (2) both Ti and Tj are not declared read-only

and are committed, or both Ti and Tj are executed by the same
process pi. We call≺w

H the write-real-time order relation inH;
• update-real-time order ≺u

H — we say that Ti ≺u
H Tj if (1)

Ti ≺r
H Tj , and (2) both Ti and Tj are updating and are

can produce). We argue, that an approach based on totally ordered histories
is more elegant, because it better matches the sequential specifications used
for t-objects. We also want to stay close to, and remain compatible with, the
original formal framework of opacity presented in [10].

committed, or both Ti and Tj are executed by the same process
pi. We call ≺u

H the update-real-time order relation in H;
• program order ≺p

H — we say that Ti ≺p
H Tj if Ti ≺r

H Tj and
both Ti and Tj are issued by the same process pi. We call ≺p

H
the program order relation in H .
• arbitrary order ≺a

H — equivalent to ∅. Never Ti ≺a
H Tj holds

true. We call ≺a
H the arbitrary order relation in H .

Let H , H ′ be two histories. We say that H ′ respects the �
order of H iff ≺�H⊆≺�H′ . For any history H the following holds:
∅ =≺a

H⊆≺p
H⊆≺

u
H⊆≺w

H⊆≺c
H⊆≺r

H .
We say that Ti and Tj are concurrent if neither Ti ≺r

H Tj nor
Tj ≺r

H Ti. We say that any history H is t-sequential if H has no
concurrent transactions.

Let S be any completed t-sequential history, such that every
transaction in S, possibly except the last one, is committed. We
say that S is t-legal if, for every t-object x, the subhistory S|x =
〈texec(Tk, x.op1) →i res1, texec(Tl, x.op2) →j res2, ...〉 (for
any processes pi, pj , ..., and for any transactions Tk, Tl, ...) satisfies
the sequential specification of x, (Q, q0, INV ,RES , δ), in the
following sense: there exists a sequence of states q1, q2, ... in Q,
such that (qi−1, opi, resi, qi) ∈ δ for any i.

Let S be any completed t-sequential history. We denote by
visibleS(Tk) the longest subsequence S′ of S such that, for every
transaction Ti in S′, either (1) i = k, or (2) Ti is committed and Ti

precedes Tk. We say that a transaction Tk in S is t-legal in S, if the
history visibleS(Tk) is t-legal.

We say that histories H and H ′ are equivalent, and we write
H ≡ H ′, if for every transaction Tk in T , H|Tk = H ′|Tk.

Definition 1. A finite historyH is final-state � opaque if there exists
a t-sequential history S equivalent to any completion of H , such
that:

1. every transaction Tk in S is t-legal in S, and
2. S respects the � (order) of H .

Definition 2. A history H is � opaque if every finite prefix of H is
final-state � opaque.

In the above two definitions � can be either real-time, commit-
real-time, write-real-time, update-real-time, program order, or arbi-
trary order. Therefore we obtain a whole family of � opacity proper-
ties. Real-time opacity is equivalent to opacity. By substituting real-
time with weaker ordering guarantees we obtain gradually weaker
properties with arbitrary order opacity being the weakest one.

Real-time opacity, which is equivalent to the original definition
of opacity [10], requires that all transactions, regardless of their
state of execution (live, aborted, commit-pending or committed) al-
ways observe a consistent and the most recent view of the system.
Commit-real-time opacity relaxes opacity, by restricting the real-
time order to only committed transactions (thus allowing aborted
transactions to observe stale, but consistent data). Write-real-time
opacity and update-real-time opacity additionally relax the real-
time order requirement on transactions that, respectively, are known
a priori to be read-only (are declared read-only), or do not perform
any updating operations (are read-only). Program order opacity en-
sures that transactions respect program order (i.e. the order of ex-
ecution of all local transactions has to be respected across all pro-
cesses). Finally, arbitrary order opacity imposes no requirements
on the order of transactions’ execution, as long as all transactions
are t-legal.

Write-real time opacity is suitable only for systems that can dis-
tinguish between transactions that did not perform any updating
operations and transactions known a priori to be read only (only
for the latter ones the DRO predicate holds). In such systems,
the additional information about transactions can be either pro-

vided by the programmer or can be deduced prior to a transaction
execution from the transaction code itself. By manually marking
some transactions as declared read-only, a programmer can decide
whether a read-only transaction Tk may read-stale data (DRO(Tk)
holds) or has to respect real-time order (DRO(Tk) does not hold).
We can make the following two observations. Firstly, given a his-
tory H which is write real-time opaque, if there are no transac-
tions for which the DRO predicate holds, H is also commit-real-
time opaque. Secondly, given a history H that is update real-time
opaque, if for all read-only transactions the predicate DRO holds,
H is also write real-time opaque.

Figure 1 illustrates the relations between the members of the �
opacity family by example. It depicts four histories (two variants of
history Hb can be deduced depending on the value of DRO(T3)).
Each history represents a case when one property is satisfied while
another, a stronger one, is not.

Histories Ha and Hb represent our main motivation: enabling
aborted and read-only transactions to read from a stale (but consis-
tent) snapshot. Let us first considerHa. Transactions T1 and T2 ac-
cess the same t-object x. T1 precedes T2, however T2 reads a stale
value of x, and subsequently aborts. The only possible serializa-
tion ofHa in which all transactions are t-legal is 〈Ha|T2 ·Ha|T1〉.
This serialization does not respect the real-time order, as clearly
T1 ≺r

Ha
T2. Therefore, Ha breaks (real-time) opacity. It satisfies,

however, commit-real-time opacity, because T2 is aborted and it
may observe stale data.

In history Hb, transaction T3, which does not perform any up-
dating operations, is preceded by transaction T2. However, T3 does
not observe the operation x.wr2(2) of T2, as its operation x.rd3 re-
turns the value written by T1. Therefore, Hb also breaks real-time
opacity. Moreover, it breaks commit-real-time opacity. On the other
hand, Hb satisfies write-real-time opacity when DRO(T3) holds,
and update-real-time opacity when DRO(T3) does not hold.

In history Hc, similarly as in the previous example, T3 does
not obey the real-time order. This time, however, T3 is an updating
transaction. This causes the history to satisfy only program order
opacity and not update-real-time opacity, nor any stronger property.
Finally, in history Hd, even the program order is not preserved, as
p2’s transaction T3 does not observe the effects of another trans-
action (T2) executed by p2 earlier. This history, however, satisfies
arbitrary order opacity, as the transactions T2 and T3 can be re-
ordered, yielding an equivalent legal execution. This trait makes
arbitrary order opacity similar to serializability.

4. Deferred Update Replication
In this section, we briefly describe a basic version of the De-
ferred Update Replication protocol and then show why it guaran-
tees update-real-time opacity. We follow the description of DUR
from [16].

4.1 Specification
DUR typically assumes full replication of shared data items (or
shared objects), on which transactions operate. In our pseudocode,
which is presented in Algorithm 1, each shared object is identified
by a unique value of a special type objectId. For simplicity, we
assume that each shared object can only be read or written to.

Transactions are submitted to the system by clients. Each re-
quest consists of three elements: code , which specifies the oper-
ations to be executed within a transaction, args , which holds the
arguments needed for the code execution and clock , a special inte-
ger value necessary for ensuring that all earlier requests issued by
the client are serialized before the most recent client’s request.

Each process maintains two global variables. The first one, LC ,
represents the logical clock which is incremented every time a
process applies updates of a new transaction (line 57). LC allows

Ha

p1

p2

x.rd1 → 0 x.wr1(1)→ ok tryC1 → C1

x.rd2 → 0 x.wr2(1)→ ok tryC2 → A2

Hb

p1

p2

x.rd1 → 0 x.wr1(1)→ ok tryC1 → C1

x.rd2 → 1 x.wr2(2)→ ok tryC2 → C2

x.rd3 → 1 tryC3 → C3

Hc

p1

p2

x.rd1 → 0 x.wr1(1)→ ok tryC1 → C1

x.rd2 → 1 x.wr2(2)→ ok tryC2 → C2

x.rd3 → 1 y.wr3(1)→ ok tryC3 → C3

Hd
p1

p2

x.rd1 → 0 x.wr1(1)→ ok tryC1 → C1

x.rd2 → 1 x.wr2(2)→ ok tryC2 → C2 x.rd3 → 0 tryC3 → C3

Figure 1. Example histories for two processes p1 and p2. History Ha is commit-real-time opaque, but not real-time opaque. History Hb is
update-real-time opaque, but not commit-real-time opaque. Additionally, Hb is write-real-time opaque, iff DRO(T3) in Hb. History Hc is
program order opaque, but not update-real-time opaque. History Hd is arbitrary order opaque, but not program order opaque.

the process to track whether its state is recent enough to execute
the client’s request (line 19). Additionally, LC is used to mark the
start and the end of the transaction execution (lines 24 and 54). The
transaction’s start and end timestamps, stored in the transaction
descriptor (line 16), allow us to reason about the precedence order
between transactions. Let H be some execution of the algorithm,
Ti and Tj some transactions in H and ti and tj be their transaction
descriptors, respectively. Then, ti.end ≤ tj .start holds only if
Ti ≺r

H Tj .5 The second variable, Log , is a set used to store the
transaction descriptors of committed transactions. Maintaining this
set is necessary to perform transaction certification.

The DUR algorithm detects any conflicts among transactions by
checking whether a given transaction Tk that is being certified read
any stale data. The latter occurs when Tk read any shared objects
that have been modified by a concurrent but already committed
transaction. For this purpose, DUR traces the accesses to shared ob-
jects independently for each transaction. The identifiers of objects
that were read and the modified objects themselves are stored in
private, per transaction, memory spaces: readset and updates . On
every read, an object’s identifier is added to the readset (line 30).
Similarly, on every write a pair of the object’s identifier and the cor-
responding object is recorded in the updates set (line 28). Then, the
CERTIFY function compares the given readset against the updates
of all the committed transactions in Log that are concurrent with
the tested transaction. If it finds any non-empty intersection of the
sets, the outcome is negative. Otherwise, it is positive (no conflicts
detected, the transaction is certified successfully). Note that every
time a transaction reads some shared object, a check against con-
flicts is performed (line 31). This way Tk is guaranteed to always
read from a consistent snapshot. When a conflict is detected, Tk is
aborted and forced to retry.

When a transaction’s code completes, the COMMIT operation
(line 35) is used to end the transaction and initiate the committing
phase, which can be explained as follows. If Tk is a read-only trans-
action (Tk did not modify any objects), it can commit straight away,

5 Moreover, if both Ti and Tj are committed updating transactions, Ti ≺r
H

Tj and ti.end > tj .start , then Ti and Tj must not be in conflict (as
otherwise Tj would be aborted).

without performing any further conflict checks or process synchro-
nization (lines 36–37). A read-only transaction does not need to
perform certification as the possible conflicts would have been de-
tected earlier, upon read operations (line 31). On the other hand,
for updating transactions, first, the local certification takes place
(line 38), which is not mandatory, but allows the process to detect
conflicts earlier, and thus sometimes avoid costly network commu-
nication. Next, the transaction’s descriptor containing readset and
updates is broadcast to all processes using TO-BROADCAST (line
40). The message is delivered in the main thread, where the final
certification takes place (line 52). Upon successful certification of
transaction Tk, processes apply the updates performed by Tk and
commit it (lines 54–57). Otherwise, Tk is rolled back and reexe-
cuted by the same process.

To manage the control flow of a transaction, the programmer can
use two additional operations: ROLLBACK and RETRY, whose se-
mantics is similar as in transactional memory systems. The ROLL-
BACK operation (line 46) stops the execution of a transaction and
revokes all the changes it performed so far. The RETRY operation
(line 48) forces a transaction to rollback and restart.

For clarity, we made several simplifications. Firstly, note that
the operations on LC (lines 24, 54, 57), Log (lines 10 and 55) and
the accesses to transactional objects (lines 7 and 56) have to be
synchronized. For simplicity, a single global lock is used. For better
performance, the implementation can rely on fine-grained locks.
Secondly, in our pseudocode, Log can grow indefinitely. In reality,
Log can easily be kept small by garbage collecting information
about the already committed transactions that ended before the
oldest live transaction started its execution in the system.

In the presented algorithm, we use the same certification proce-
dure for both the certification test performed upon every read oper-
ation (line 31) and the certification test that happens after a trans-
action descriptor is delivered to the main thread (line 52). In prac-
tice, however, doing so would be very inefficient. It is because for
every read operation, we check for the conflicts against all the con-
current transactions (line 10), thus performing much of the same
work again and again. However, these repeated actions can be eas-
ily avoided by associating the accessed shared objects with version

Algorithm 1 Deferred Update Replication for process pi
1: integer LC ← 0
2: set Log ← ∅
3: function GETOBJECT(txDescriptor t, objectId oid)
4: if (oid, obj) ∈ t.updates then
5: value← obj
6: else
7: value← retrieve object oid
8: return value
9: function CERTIFY(integer start, set readset)

10: lock { L← {t ∈ Log : t.end > start} }
11: for all t ∈ L do
12: writeset← {oid : ∃(oid, obj) ∈ t.updates}
13: if readset ∩ writeset 6= ∅ then
14: return failure

15: return success

Thread q on request r from client c (executed on one replica)
16: txDescriptor t← ⊥ // type: record (id, start, end, readset, updates)
17: response res← ⊥
18: upon INIT
19: wait until LC ≥ r.clock
20: raise TRANSACTION
21: return (id, LC, res) to client c
22: upon TRANSACTION
23: t← (a new unique id, 0, 0, ∅, ∅)
24: lock { t.start← LC }
25: res← execute r.code with r.args
26: COMMIT()
27: upon WRITE(objectId oid, object obj)
28: t.updates← {(oid′, obj′) ∈ t.updates : oid′ 6= oid}

∪{(oid, obj)}

29: upon READ(objectId oid)
30: t.readset← t.readset ∪ {oid}
31: lock { if CERTIFY(t.start, {oid}) = failure then
32: raise RETRY
33: else
34: return GETOBJECT(t, oid) }
35: procedure COMMIT
36: if t.updates = ∅ then
37: return to INIT
38: if CERTIFY(t.start, t.readset) = failure then
39: raise RETRY
40: TO-BROADCAST t
41: wait for outcome
42: if outcome = failure then
43: raise RETRY
44: else // outcome = success
45: return to INIT
46: upon ROLLBACK
47: stop executing r.code and return to INIT

48: upon RETRY
49: stop executing r.code
50: raise TRANSACTION

The main thread of DUR (executed on all replicas)
51: upon TO-DELIVER (txDescriptor t)
52: outcome← CERTIFY(t.start, t.readset)
53: if outcome = success then
54: lock { t.end← LC
55: Log ← Log ∪ {t}
56: apply t.updates
57: LC ← LC + 1 }
58: if transaction with t.id executed locally by thread q then
59: pass outcome to thread q

number equal to the value of LC at the time the objects were most
recently modified.

4.2 Correctness
Now we show that DUR indeed satisfies update-real-time opacity.

Theorem 1. Deferred Update Replication satisfies update-real-
time opacity.

Proof sketch. In order to prove that DUR satisfies update-real-time
opacity, we have to show that for every history H produced by
DUR, there exists a sequential history S equivalent to some com-
pletion of H , such that S respects the update-real-time order of H
and every transaction Tk in S is t-legal in S.

Informally, we have to prove that for any execution historyH of
DUR there exists a sequential history S such that: (1) all updating
transactions in S are ordered in a way that respects the real-time
order of their original execution, (2) S reflects the transaction
execution order of every process (program order) and (3) every
transaction Tk (no matter its state of execution) always observes
a consistent state of the system, i.e., in S, every read operation of
Tk on each t-object x returns the value stored by the most recent
preceding write operation on x of some committed transaction (or
Tk itself).

Now, we show how to construct a sequential history S from any
execution H , such that S satisfies (1), (2) and (3). Let update :
N → T be a function that maps the values LC have taken during
the execution to committed updating transaction which set that
particular value. Let S = 〈H|update(1) · H|update(2) · ...〉.
This way S includes the operations of all the committed updating
transactions in H . Now, let us add the rest of transactions from H

to S in the following way. For every such a transaction Tk with a
transaction descriptor tk, find a committed updating transaction Tl

with a transaction descriptor tl in S, such that tk.start = tl.end ,
and insert H|Tk immediately after Tl’s operations in S. If there
is no such transaction Tl (tk.start = 0), then add H|Tk to the
beginning of S. In case of a process that executed multiple such
transactions with the same start timestamp, rearrange them in S
according to the order in which they were executed by the process.

Let us now see why S satisfies (1). All committed updating
transactions are serialized in S according to the order in which
they modified LC upon commit. This order is established by TOB.
Consider two committed updating transactions Ti and Tj in S, such
that Ti ≺r

H Tj . It means that, the first operation of Tj in H must
have appeared after the commit of Ti. Therefore, Ti must have been
broadcast (and delivered by the majority of processes) by TOB
before Tj was broadcast.

Now, let us consider (2). Trivially, S respects program order
for all committed updating transactions (≺p

H⊆≺
r
H). In order to

show why S respects program order also for other transactions,
let us consider two transactions Ti and Tj (with transaction de-
scriptors ti and tj) executed by the same process pi. Since, a pro-
cess can execute only one transaction at a time, either Ti ≺r

H Tj

or Tj ≺r
H Ti. Without loss of generality, let us assume the for-

mer holds. Since, LC increases monotonically during the execu-
tion, ti.start ≤ tj .start . If ti.start < tj .start , then, according to
the procedure described earlier, Ti was inserted after a committed
updating transaction Tk with an end timestamp equal to ti.start
(or Ti was inserted at the beginning of S), and Tj was inserted
after a committed updating transaction Tl with an end timestamp
equal to tj .start . Thus, Tk must precede Tl in S (or Tk does not

exist), and so Ti has to precede Tj as well. On the other hand, if
ti.start = tj .start , then, according to the procedure, we rearrange
Ti and Tj in S according to the order in which they were executed
by pi, thus explicitly satisfying (2).

The proof of (3) is based on the following two observations.
Firstly, every process maintains only the most recent value of every
t-object. It means that if some transaction Tk executed by some
process pi reads a t-object x, the read value either is the initial
state of x, has been written by Tk, or has been written by the
most recently committed transaction that modified x and whose
updates have been applied to the state of pi. Secondly, before any
transaction Tk can read some t-object, it has to ensure that it is not
about to read from a concurrent but already committed transaction.
An attempt to read an inconsistent value results in a rollback and
restart Tk. Since the order of updating transactions in S (and the
order of every write operation) is equivalent to the order in which
updates are applied to the local state, (3) is satisfied for every
transaction in H .

Since for every execution history H of DUR we can find an
equivalent sequential history S that satisfies (1), (2) and (3), DUR
guarantees update-real-time opacity.

5. Conclusions
In this paper we tackled the problem of opacity being an inade-
quate correctness criterion for Deferred Update Replication proto-
col, typically used for achieving consistency in transactional dis-
tributed systems. Our new property, called update-real-time opac-
ity, precisely describes the characteristics of DUR by relaxing real-
time order requirements for transactions that do not perform any
updating operations. Update-real-time opacity is suitable not only
for describing the behaviour of DUR but also of similar replication
protocols such as Postgres-R and EDUR.

We described update-real-time opacity as a member of a new
� opacity family of properties whose members relax time ordering
requirements of opacity to various extent. This way we are able
to formalize the behaviour of a wider class of strongly consistent
transactional systems.

In the future, we plan to extend the family of properties based
on opacity to account for other replication protocols, including the
eventually consistent ones.

Acknowledgments
The project was funded from National Science Centre funds
granted by decision No. DEC-2012/07/B/ST6/01230.

References
[1] P. A., Bernstein, V. Hadzilacos, and N. Goodman. Concurrency con-

trol and recovery in database systems. Addison-Wesley, 1987.
[2] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi. Exploiting atomic

broadcast in replicated databases (extended abstract). In Proc. of Euro-
Par ’97, Aug. 1997.

[3] H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. Safety of deferred
update in transactional memory. In Proc. of ICDCS ’13, 2013.

[4] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz, and A. Silber-
schatz. On rigorous transaction scheduling. IEEE Transactions on
Software Engineering, 17(9), 1991.

[5] B. Charron-Bost, F. Pedone, and A. Schiper, editors. Replication -
Theory and Practice, volume 5959 of LNCS. Springer, 2010.

[6] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. D2STM:
Dependable distributed software transactional memory. In Proc. of
PRDC ’09, Nov. 2009.

[7] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Comput. Surv., 36
(4), Dec. 2004.

[8] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally
specifying and verifying transactional memory. Formal Asp. Comput.,
25(5), 2013.

[9] R. Guerraoui and M. Kapalka. On the correctness of transactional
memory. In Proc. of PPoPP ’08, Feb. 2008.

[10] R. Guerraoui and M. Kapalka. Principles of Transactional Mem-
ory. Synthesis Lectures on Distributed Computing Theory. Morgan
& Claypool Publishers, 2010.

[11] R. Guerraoui and E. Ruppert. Linearizability is not always a safety
property. In Proc. of NETYS ’14. May 2014.

[12] R. Hansdah and L. Patnaik. Update serializability in locking. In Proc.
of ICDT ’86. Sept. 1986.

[13] D. Imbs, J. R. G. De Mendivil Moreno, and M. Raynal. On the
Consistency Conditions of Transactional Memories. Research Report
PI 1917, 2008. URL https://hal.inria.fr/inria-00350131.

[14] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, a
new way to implement database replication. In Proc. VLDB ’00, Sept.
2000.

[15] T. Kobus, M. Kokociński, and P. T. Wojciechowski. Hybrid repli-
cation: State-machine-based and deferred-update replication schemes
combined. In Proc. ICDCS ’13, July 2013. .

[16] T. Kobus, M. Kokociński, and P. T. Wojciechowski. Introduction to
transactional replication. In R. Guerraoui and P. Romano, editors,
Transactional Memory. Foundations, Algorithms, Tools, and Applica-
tions, volume 8913 of LNCS. Springer, 2015.

[17] M. Kokociński, T. Kobus, and P. T. Wojciechowski. Make the leader
work: Executive deferred update replication. In Proc. of SRDS ’14,
Oct. 2014.

[18] C. H. Papadimitriou. The serializability of concurrent database up-
dates. J. ACM, 26(4):631–653, Oct. 1979.

[19] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic broadcast
in replicated databases. In Proc. of Euro-Par ’98, Sept. 1998.

[20] F. Pedone, R. Guerraoui, and André. The database state machine
approach. Distributed and Parallel Databases, 14(1), July 2003.

[21] D. Sciascia and F. Pedone. RAM-DUR: In-Memory Deferred Update
Replication. In Proc. of SRDS ’12, Oct. 2012.

[22] D. Sciascia, F. Pedone, and F. Junqueira. Scalable deferred update
replication. In Proc. of DSN ’12, June 2012.

[23] P. T. Wojciechowski, T. Kobus, and M. Kokociński. Model-driven
comparison of state-machine-based and deferred-update replication
schemes. In Proc. of SRDS ’12, Oct. 2012. .

