
Transactional Tools for the Third Decade ∗

Matthew Kilgore, Stephen Louie, Chao Wang, Tingzhe Zhou, Wenjia Ruan, Yujie Liu, and Michael Spear
Lehigh University

{mak209, srl214, chw412, tiz214, wer210, yul510, spear}@cse.lehigh.edu

Abstract
In this paper, we present the current state of a variety of software
tools that we are making available to the broad research community.
Our intent is to ensure that researchers in Transactional Memory
(TM) and related fields have a common baseline that is both easy
to use and appropriate for implementing new algorithms and testing
hypotheses.

The most significant contribution is a transactionalized C++
Standard Template Library. We also provide a proper and extensible
lazy software TM implementation, a common build environment, a
repackaging of several benchmarks, and a transactional thread-level
speculation infrastructure. In total, we believe this creates a suitable
baseline for researchers in this “third decade” of Transactional
Memory.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

Keywords Transactional Memory, Synchronization, GCC, C++,
Standard Template Library

1. Introduction
The term “Transactional Memory” (TM) was first coined in 1993 [11].
Researchers have spent the subsequent years exploring first what
TM ought to be, then how to make it fast. With the subsequent
arrival of both hardware [13] and compiler [9] support for TM in
commodity products, the third decade of TM research appears to be
one of how to use TM most effectively. This does not obviate con-
tinued research into hardware and software TM implementations,
but it does change how research is conducted: any new proposal
ought to be immediately compatible with existing tools, or else it
must justify its deviation from the standard.

Surprisingly, the existing TM tools do not make this easy. Ex-
tending the GCC TM to support lazy writes requires significant nu-
ance in data structure design. Transactionalizing real-world appli-
cations is similarly nontrivial. Even standard benchmarks are not
necessarily easy to use. We worry that the difficulty of the tools
results in a slower pace of research, if not bad research.

Our goal is to provide a baseline that remedies these problems.
The most significant contribution of this work is the release of a
TM-compatible C++ Standard Template Library (STL). While the
work to make the STL transaction-safe is relatively straightforward,
the corner cases in which transactions misbehave are nontrivial, and
merit discussion. To motivate the need for a transactional STL, we
show that using the STL in place of traditional ad-hoc TM-friendly
collections can have surprising performance consequences. If real-
world developers use the STL, and TM researchers do not, our
conclusions are likely to diverge.

∗ All software artifacts related to this work can be found at
https://github.com/mfs409/transmem

Our second contribution is a researcher-friendly variant of the
GCC TM implementation. Our implementation includes a proper
lazy software TM implementation, and is organized in a manner
that is more amenable to researchers. We share some cautionary
tales about the creation of this implementation, which we hope will
convince fellow researchers of the importance of a good baseline
implementation.

Our third contribution is a novel framework for thread-level
speculation using TM. The benefit of this framework is twofold:
first, it is open-source and built on standard technologies, which
makes it generalizable. Second, it shows how a researcher-friendly
GCC TM implementation makes it possible to re-purpose TM
mechanisms to related domains.

Finally, we provide a pre-packaged set of TM benchmarks
(STAMP [18], PARSEC [2], and Memcached [22]) in a single
place, with a unified build system. This provides an easy way for
researchers to be sure they are running the same tests, in a repro-
ducible fashion.

2. Transactionalizing the STL
The Draft C++ TM Specification [1] defines how lexically scoped
transactions are marked by the programmer. The specification
makes no assumptions about how TM is implemented. Thus it must
assume that a transactional program may run on a system without
hardware support, in which case per-memory-access instrumenta-
tion is needed.

The challenge this raises is that certain operations cannot be un-
done. These unsafe operations include I/O and inter-thread commu-
nication via atomic variables. Without hardware support, these
operations cannot be detected at runtime. To support software TM,
the compiler must statically ensure that unsafe operations are not is-
sued from a transaction. When a transaction calls functions that are
defined in other modules, this static checking requires additional
language machinery. To that end, the specification introduces an an-
notation on functions, transaction safe, which instructs the
compiler to (a) verify the absence of operations that cannot be un-
done, and (b) produce a version of the function in which all shared
memory accesses are instrumented.1

A final wrinkle is that in templated code, the transaction-safety
of a function can depend on how the code is instantiated. As a
simple example, consider the following template:

t empla te <c l a s s T>
c l a s s Foo<T> {

T t ;
i n t o p e r a t i o n () { re turn t . g e t D a t a () ; }

}
In this code, Foo::operation() is transaction-safe only if
T::getData() is transaction safe. If the programmer intends

1 The upcoming revision to the draft specification will make these annota-
tions part of the function’s type.

1 2015/6/15

for Foo to be instantiated with many different classes T, of which
some do not have a safe getData function, then it is not correct
to annotate operation() as being transaction-safe. The speci-
fication solves this through limited inference: within a translation
unit (e.g., a .cc file and all of its included headers), the safety of
functions is inferred by the compiler. Annotations are only required
for functions that are declared within a translation unit, but defined
elsewhere (e.g., separate compilation).

2.1 A TM-Friendly STL
To identify the modifications needed to make the STL work with
TM, we developed sequential programs to instantiate every method
of each of the following containers: deque, list, map, pair, tuple,
unordered map, unordered multiset, unordered set, and vector. We
then transformed these sequential programs, each consisting of
roughly 1500 lines of code, into parallel programs in which all code
ran within transactions. Compilation errors for this second version
of the code identified the modifications needed to make each STL
container transaction-safe.

We tested every method of each container, as defined in the
upcoming C++14 specification. Depending on the container, this
could be as high as 70 distinct methods. We determined that 18
modifications were required:

• The current specification does not define std::abort()
to be transaction-safe. When using std::list, a program
should terminate immediately if an operation is performed on
two lists that do not use the same allocator. Since the next draft
of the C++ TM specification will declare std::abort to be
safe, we modified it accordingly.

• std::list uses an auxiliary class to define its underlying
list, and that underlying class defines several functions outside
of the template header file. Five transaction safe annota-
tions were required. Another five were needed in the red-black
tree used by std::set, and another two annotations in the
hashtable code used by std::unordered set, for the same
reason.

• GCC does not yet provide a transaction-safe memcmp(). We
added a safe memcmp(), which enabled std::equal to be
used safely within STL containers.

• GCC’s STL implementation uses helper functions to normalize
the throwing of exceptions across containers. We annotated 4
functions for reasons similar to “out-lined code”.

In total, this effort introduced less than 50 new lines of code, in-
cluding comments. We also identified a few (surmountable) prob-
lems that will be instructive to developers:

• The specification insists that transactional and nontransactional
versions of a function be generated from the same source. This
can introduce performance penalties. For example, in string
functions, nontransactional code might wish to use SIMD in-
structions that are not compatible with TM. Ni et al. proposed
a transaction wrap mechanism, through which differ-
ent (but functionally equivalent) code bodies can be provided
for the transactional and nontransactional versions of a func-
tion [19]. This feature was beneficial to std::equal. Cou-
pled with a prior study on transactionalizing memcached [22],
we believe there is sufficient justification to add this feature to
the specification.

• While STL containers are the preferred foundation upon which
to build C++ code, they are not always designed with scalability
in mind.2 In one surprising example, the C++11 standard intro-

2 A new C++ Study Group has begun working on this problem.

duced the requirement for std::list to provide an O(1) size
function. This, in turn, necessitates a per-list counter, modified
on every insert and removal. Similar bottlenecks exist in more
scalable data structures, such as the red-black tree (std::set)
and hashtable (std::unordered set).

2.2 An Open Problem: Exceptions, Strings, and Memory
Leaks

We also encountered one insurmountable problem, related to back-
wards compatibility. In December of 2014, the GCC implemen-
tation of std::string changed in a way that both (a) breaks
backward compatibility, and (b) is appealing to TM. Prior to
the change, std::string used reference counts, achieved via
atomic variables. Consequently, it was not possible to make
std::string methods transaction safe without introducing a
penalty for nontransactional code (i.e., by using transactions within
the std::string implementation, for every reference count op-
eration).

This change to std::string, which was necessary for
C++11 compliance, comes with a wrinkle: a program may use
some modules compiled to the old ABI, and others compiled to the
new. The linker will ensure that the symbols differ, so that new-
ABI code, using the new string, is not passed a reference to an
instance of the old and incompatible string. However, excep-
tions us std::string internally, and exceptions can be thrown
from old-ABI code and caught in new-ABI code (or vice versa).
The solution in GCC is to uniformly use old-ABI string objects
within exception objects.

Unfortunately, this implies that exceptions cannot be created,
thrown, caught, or re-thrown from transactions (otherwise, the
transaction must be able to access a volatile reference count,
which is not transaction-safe). The only workaround at the present
time is to outline any STL code that deals with exceptions (for
modularity, GCC already does this), and then mark that code as
transaction pure. Software transactions may call pure func-
tions, because it is assumed that such functions are free of side
effects.

This trick, however, also carries a cost: in a pure function,
calls to malloc are not monitored by the TM, and hence, if the
calling transaction aborts, the allocation will not be reclaimed;
there can be memory leaks. This applies to our “pure” exception
code: if an exception is thrown by transactional STL code, and the
caller aborts before reclaiming the exception object, the memory
of the exception object will be leaked. Of course, this problem
only affects code that throws exceptions from transactions. The
common-case behavior of the STL is without memory leaks. A
potential solution is to employ onAbort handlers [3] within the STL
code.

3. STAMP+STL
Armed with a transactional STL, we explored the opportunity
to replace STAMP code with calls to C++ libraries. Two imme-
diate opportunities were the use of std::sort in Bayes, and
std::mt19937 as the random number generator in all bench-
marks. This saved 250 lines of code. Furthermore, since these
objects are implemented in headers, we did not require any mod-
ifications to C++ library code when calling these functions from
transactions. Previously, STAMP’s mt19937 code was treated as
pure, resulting in nondeterministic behavior when a transaction
aborted after producing a random number.

We then turned our attention to standard libraries. With the
exception of KMeans and SSCA2, all STAMP benchmarks rely
on custom data structures that have equivalents in the C++ STL.

2 2015/6/15

Eliminating these objects reduced the code size of STAMP by 33%,
to 13K lines of code. More details are provided below:

• Ordered lists: Bayes, Intruder, Vacation, and Yada used a sorted
linked list to implement a set. The C++ STL does not of-
fer a sorted list set abstraction (std::list is unsorted),
but std::set, which uses a red-black tree as its underly-
ing data structure, offers the same interface as STAMP’s list.
Genome uses a custom hash table with a fixed number of buck-
ets, where each bucket held a linked list. Here, too, we replaced
the lists with std::set, resulting in an array of lists. Lastly,
in Labyrinth, a list of vectors of vectors was replaced with a
std::set of std::vectors to std::vectors. This ef-
fort also encountered an invalid cast from long to void* in
Bayes (STAMP lists hold void* elements).

• Maps: STAMP uses either AVL trees or red-black trees to im-
plement maps. We replaced these with std::map in Vaca-
tion, Intruder, and Yada. There was no functional difference be-
tween the choice of AVL or red-black tree, and hence the use of
std::map, which uses a red-black tree, was sufficient.

• Vectors: Genome, Labyrinth, Intruder, Bayes, and Yada used
vectors, which we replaced with std::vector. STAMP’s
vector takes a capacity hint in its allocation function, which we
achieved instead by using the vector::reserve() func-
tion.

• Hash tables: Genome used custom a custom hashtable, which
we replaced with std::unordered set. While the STAMP
hashtable is a key/value store, Genome only requires a key
store, hence we did not use std::unordered map.

• Bitmaps: Genome and Bayes both use a bitmap object. Unfor-
tunately, std::bitmap requires the bitmap size at compile
time. Instead, we used std::vector<bool>.

• Pairs: Vacation, Intruder, Yada, and Labyrinth used a custom
pair object, which we replaced with std::pair.

• Queues: The STAMP queue object used by Labyrinth, Intruder,
Bayes, and Yada uses a fixed size array, which resizes upon
insertion into a full queue. Instead, we used std::queue,
which is an adapter class atop std::deque. There were
a few API changes: STAMP’s queue uses a single function,
pop, where the STL uses the sequence front(); pop();;
STAMP’s queue offers a clear() method, whereas the
std::queue requires a loop of pops to achieve the same
effect; and STAMP’s pop returns NULL when issued on an
empty queue, necessitating that all pops from std::queue
first checked for an empty queue. Lastly, STAMP’s queue has a
shuffle method, for randomizing the order of elements. We
achieved this by moving all data to a vector, shuffling the vector
via the same algorithm as STAMP’s queue, and then copying
the vector back into the queue.

• Heaps: Yada uses a priority queue (min heap). We replaced this
with std::multiset, to capture the requirement that the
heap can have several elements with the same value.

In addition to eliminating code and making STAMP resemble
real-world C++ programs, STL-STAMP offers one more benefit:
the use of C++ containers instead of ad-hoc C data structures
enables changing data structures in a constant number of source
code edits. Previously, changing a data structure required changes
to every use of the data structure. Using STL containers, it is
only necessary to change the declaration and constructor call. This
will facilitate research into new transactional data structures (e.g.,
variants of set that do not have a global counter).

4. A Better Lazy Software TM Implementation
In 2011, Kestor et al. presented a shim for translating calls by
the Intel TM Compiler into calls to the RSTM library [14]. In
our opinion, this work has been largely ignored, resulting in some
erroneous research.

Kestor identified three challenges for Lazy TM, one of which
was also reported by Yoo et al. [25]:
• Pointer aliasing of writes to the stack can violate correctness.
• Value validation of aliased stack reads can cause unnecessary

aborts.
• Write-set implementations for Lazy software TM require more

nuance.
Given that GCC-TM is open-source, we sought to create a

lazy TM within the GCC infrastructure, rather than connecting
GCC-TM to RSTM via a level of indirection.3 Since we required
both lazy orec-based TM [6, 8, 23] and NOrec [5], we began by
creating a “researcher-friendly” GCC-TM library. Whereas GCC-
TM must be compiled as part of a full GCC source checkout,
our library is a standalone build, using the same GCC-TM source
code, but a custom Makefile. Though a trivial task, this offers
huge benefit, since researchers can independently manage multiple
TM implementations, without requiring gigabytes of storage and
lengthy configure/compilation times.

In regard to Kestor’s first challenge, pointer aliasing, we devel-
oped test cases to show when this can occur. Suppose there exists a
function f, which takes a single parameter of type int*, named p.
Let f be called with p being the address of a heap variable: in this
case, f must use instrumentation to read and write at the location
referenced by p, or else concurrent transactional accesses to that
location will be racy. However, if f is called from a transaction,
but passes the address of a transaction-local value (i.e., a variable
declared within the lexical scope of the transaction)) as p, then a
problem arises: the compiler knows that p refers to a local, and
hence subsequent reads of the local variable are not instrumented
(i.e., are not transactional reads). To ensure the subsequent reads
observe the updated value, it is necessary for transactional writes
to check if a variable is transaction-local, and update it directly if
so. A similar problem arises for non-shared stack variables that are
not local to the transaction. These must be undo-logged, in case of
rollback, but again must be updated immediately.

The second challenge is more subtle, in that it does not apply
to all lazy TMs, only to NOrec. In NOrec, a transaction logs the
locations it reads, and the values it observes. We found that our
first (naive) NOrec implementation scaled poorly. We discovered
that our benchmark performed a transactional read to a thread-
local value on the transaction’s stack. The relevant function sub-
sequently returned, another function was called, and the address of
the previously-read stack location changed. At this point, any val-
idation of the transaction would cause an erroneous abort. How-
ever, aborts only happen in response to concurrent commits by
other writer transactions. Thus single-threaded code runs without
any slowdown, despite this bug. Worse, concurrent code does not
hang: no transaction can successfully validate, but a writing trans-
action may commit if there were no successful commits between
its start and commit. In effect, the behavior of the program reduced
to sequential, with many transactions starting, one committing, the
remainder validating and erroneously aborting, and then the pro-
cess repeating. It was necessary for us to add a custom stack fil-
tering step to transactional reads in our NOrec implementation. We
hope that Hybrid TM researchers who are comparing to Hybrid
NOrec [4] have not made this same mistake!

3 Recall that this approach was not possible in 2011, when GCC-TM was
not available.

3 2015/6/15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

EagerSTM + STL
EagerSTM

LazySTM + STL
LazySTM

EagerSTM + Original STAMP

(a) Genome

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(b) Intruder

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(c) SSCA2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(d) Yada

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(e) Vacation (low)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(f) Vacation (high)

Figure 1: STAMP results on Westmere dual-chip system (1/2)

Lastly, the write set must be able to handle mixed-granularity
accesses (e.g., writing a byte and then reading the enclosing word),
without ever performing write-back of bytes that were not explicitly
read by a transaction. Most library-based TM implementations in-
correctly operate at the granularity of words, and most manually in-
strumented workloads do not make dangerous accesses. However,
GCC can, and does, make mixed granularity accesses, in ways that
are completely legitimate and necessary for correct program exe-
cution. To ensure correctness, we extended the RSTM hash table to

store 64-byte blocks, along with a 64-bit mask to track which bytes
within a block are valid. We performed a set of obvious sequential
optimizations to this implementation.

To summarize, our framework is source-code and binary com-
patible with GCC-TM, is easy to build, and correctly supports hard-
ware TM (i.e., Intel TSX), eager software TM (e.g., the baseline
GCC-TM or TLRW [7]), and lazy software TM (to include NOrec).
We believe it is the best available starting point for new TM algo-
rithm designers who wish to use GCC-TM.

4 2015/6/15

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(a) KMeans (low)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(b) KMeans (high)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(c) Labyrinth

Figure 2: STAMP results on Westmere dual-chip system (2/2)

5. Performance Evaluation
As stated earlier, we view the transactional STL as the most sig-
nificant contribution in our new toolkit. Let us take a moment to
analyze its performance.

5.1 Experimental Configuration
We consider two hardware systems. Experiments labeled “West-
mere” were performed on a system with two Intel Xeon X5650
chips running at 2.67 GHz. This system has 12 cores/24 threads.

Experiments labeled “Haswell” were performed on a system with a
single Intel Core i7-4770 CPU running at 3.40 GHz. The “Haswell”
machine supports hardware TM. Both machines ran Ubuntu Linux
13.04, Linux kernel version 3.8.0. All benchmarks were compiled
with the latest pre-release GCC 5.0. Code was compiled with –O2
optimizations. All experiments reported in this paper are the aver-
age of five trials.

We compare up to three TM implementations on each sys-
tem: “HTM”, running only on the Haswell system, uses Intel
TSX [13]. “EagerSTM” refers to the standard GCC software TM,
a privatization-safe version of TinySTM [8]. “LazySTM” modifies
GCC’s software TM to use commit-time locking and redo log-
ging, effectively providing a privatization-safe version of Patient
TM [23].

We similarly compare three versions of STAMP. “+ Origi-
nal” refers to STAMP 0.9.10, from 2008. Curves lacking a “+”
used C++STAMP [21]. “+ STL” replaces C++STAMP data struc-
tures with STL containers. All benchmarks were run with rec-
ommended non-simulator parameters. For KMeans and Vaca-
tion, we used both the high- and low-contention settings. Note
that “+ Original” Yada and Labyrinth are not shown, as they use
transaction restart, which is incompatible with the GCC’s
TM, and Bayes is not presented, since it is nondeterministic.

5.2 STAMP Performance
Figures 1, 2, 3, and 4 present STAMP performance on the Westmere
and Haswell systems, respectively. Surprisingly, the use of the
STL could either increase or decrease latency, depending on the
workload. These outcomes both make sense: for contended data
structures, the use of exact counters in the STL to report collection
size can be a bottleneck. On the other hand, template code is more
aggressively inlined, and hence there ought to be lower latency than
in previous STAMP versions.

To gain further insight, we ran a red-black tree microbench-
mark. STAMP’s custom red-black tree is optimized for scalability.
In particular, it does not support a size function. In contrast, the
STL std::set object, which is also a red-black tree, requires ev-
ery insertion and removal to modify a per-instance counter, in order
to allow O(1) determination of the size of the data structure.

We were surprised that this bottleneck did not affect Vacation’s
“+ STL” performance. Subsequently, we ran a red-black tree micro-
benchmark, in which threads performed lookups, insertions, and
removals with equal probability, in a tree with 8-bit keys. Figure 5
compares a scalable red-black tree (RBTree) against std::set
for this workload.

While the small size of the tree ensures many conflicts between
operations, we still see good scaling for the custom tree on West-
mere. In contrast, std::set hardly scales at all. Considering that
the shared counter bounces between cores on every modification
to the tree, this is not a surprise. In additional tests, we found
that higher lookup ratios and larger key ranges led to some scal-
ing for the STL tree, though still not close to the performance of
the bottleneck-free tree. On Haswell, the story is even more dire:
neither tree scales at all for the reported configuration. Again, for
larger trees and higher lookup ratios, the custom tree is able to
achieve some scaling. However, in this case there are two culprits:
shared counters, and an apparent pathological interaction between
HTM and the system allocator. Further exploration of this problem
is left as future work.

6. Other Tools for TM Researchers
We briefly summarize two additional components of our new tool
suite. First, we include a transactional version of memcached [22],
and a version of PARSEC [2] that is fully compatible with the Draft
C++ TM Specification [1]. This includes a version of transaction-

5 2015/6/15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

EagerSTM + STL
EagerSTM

LazySTM + STL
LazySTM

HTM + STL
HTM

EagerSTM + Original STAMP
HTM + Original STAMP

(a) Genome

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(b) Intruder

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(c) SSCA2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(d) Yada

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(e) Vacation (low)

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(f) Vacation (high)

Figure 3: STAMP results on Haswell system (1/2)

friendly condition variables. We believe that providing all of these
tools in one place will make TM researchers more productive.

Secondly, we provide an extension to Intel’s Threaded Building
Blocks [12] that provides two new templates: an unordered specu-
lative loop, and an ordered speculative loop. The former executes
loop iterations in any order, running each as a transaction. This is
well-suited for programs where nondeterminism is acceptable, but
there may be conflicting accesses between iterations. This mecha-
nism can use any TM implementation, without modification.

Our ordered speculative loop extends GCC-TM with a new
function, set range, which tells a TM implementation both (a)
where a per-thread TBB range object can be found, and (b) the
union of all ranges that will run for a given loop nest. We provide a
set of custom TM implementations (based on eager software TM,
lazy software TM, hardware TM, and the SpLIP algorithm [20]),
which allow ordered transactional speculation [24] over arbitrary
sequential loops. While this work is preliminary, it highlights the
benefit of our simplified GCC environment: we can create a TBB

6 2015/6/15

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(a) KMeans (low)

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(b) KMeans (high)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

(c) Labyrinth

Figure 4: STAMP results on Haswell system (2/2)

template and connect it to a TM implementation in under 100 lines
of code.

We are hopeful that, by providing our toolchain as an open-
source repository, other researchers will be encouraged to con-
tribute their programs and tools. To achieve consistency among
tools and programs, some degree of porting will be required. How-
ever, we hope that it will ultimately be possible to include other
benchmarks (e.g., AtomicQuake [26], SynQuake [17], and RMS-
TM [15]) and tools (e.g., Lev’s debugger [16], Gottschlich’s visu-
alizer [10], and Zyulkyarov’s profiler [27]).

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 4 8 12 16 20 24

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

RBtree
std::set

(a) Westmere

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 4 8

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

RBtree
std::set

(b) Haswell

Figure 5: Red-black tree micro-benchmark. Westmere used the
EagerSTM runtime, Haswell used HTM.

7. Conclusions
The third decade of TM research is upon us. This decade holds
great promise, in that we have, at long last, real and production-
quality tools at our disposal. With these tools comes a responsi-
bility, as a community, to hold our research to a higher standard,
especially when making claims about how results will apply to the
real world. We believe that benchmarks should use the STL (and fix
it, if scalability issues persist); new algorithms should be compat-
ible with how real TM compilers work; and all researchers should
have access to a broad array of benchmarks.

To support our position, we presented a TM-compatible STL
(with discussion of its limitations), better implementations of lazy
software TM for GCC, and additional tools to both aid in the eval-
uation of current systems, and encourage transactional researchers
to branch out to new areas. Recognizing that our efforts are hardly
the only in this area, we encourage other developers of core TM
libraries and language support to share their work, so that we may
create a clearing house of tools and benchmarks to encourage trans-
actional memory’s best decade yet.

Acknowledgments
We thank Jonathan Wakely for many discussions about GCC’s
implementation of std::string. This material is based upon
work supported by the National Science Foundation under Grants
CAREER-1253362 and CCF-1218530. Any opinions, findings, and

7 2015/6/15

conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References
[1] A.-R. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich. Draft Specifi-

cation of Transactional Language Constructs for C++, Feb. 2012. Ver-
sion 1.1, http://justingottschlich.com/tm-specification-for-c-v-1-1/.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, Toronto, ON, Canada, Oct. 2008.

[3] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh,
C. Kozyrakis, and K. Olukotun. The Atomos Transactional Program-
ming Language. In Proceedings of the 27th ACM Conference on Pro-
gramming Language Design and Implementation, June 2006.

[4] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. Scott, and
M. Spear. Hybrid NOrec: A Case Study in the Effectiveness of Best
Effort Hardware Transactional Memory. In Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Newport Beach, CA, Mar. 2011.

[5] L. Dalessandro, M. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. In Proceedings of the 15th
ACM Symposium on Principles and Practice of Parallel Programming,
Bangalore, India, Jan. 2010.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In Pro-
ceedings of the 20th International Symposium on Distributed Comput-
ing, Stockholm, Sweden, Sept. 2006.

[7] D. Dice and N. Shavit. TLRW: Return of the Read-Write Lock. In Pro-
ceedings of the 22nd ACM Symposium on Parallelism in Algorithms
and Architectures, Santorini, Greece, June 2010.

[8] P. Felber, C. Fetzer, and T. Riegel. Dynamic Performance Tuning
of Word-Based Software Transactional Memory. In Proceedings of
the 13th ACM Symposium on Principles and Practice of Parallel
Programming, Salt Lake City, UT, Feb. 2008.

[9] Free Software Foundation. Transactional Memory in GCC, 2012.
http://gcc.gnu.org/wiki/TransactionalMemory.

[10] J. Gottschlich, M. Herlihy, G. Pokam, and J. Siek. Visualizing Trans-
actional Memory. In Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques, Minneapolis,
MN, Sept. 2012.

[11] M. P. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In Proceedings of the 20th
International Symposium on Computer Architecture, San Diego, CA,
May 1993.

[12] Intel Corporation. Threaded Building Blocks. Available as
www.threadingbuildingblocks.org.

[13] Intel Corporation. Intel Architecture Instruction Set Extensions Pro-
gramming (Chapter 8: Transactional Synchronization Extensions).
Feb. 2012.

[14] G. Kestor, L. Dalessandro, A. Cristal, M. Scott, and O. Unsal. In-
terchangable Back Ends for STM Compilers. In Proceedings of the
6th ACM SIGPLAN Workshop on Transactional Computing, San Jose,
CA, June 2011.

[15] G. Kestor, S. Stipic, O. Unsal, A. Cristal, and M. Valero. RMS-TM:
A Transactional Memory Benchmark for Recognition, Mining and
Synthesis Applications. In Proceedings of the 4th ACM SIGPLAN
Workshop on Transactional Computing, Raleigh, NC, Feb. 2009.

[16] Y. Lev. Debugging and Profiling of Transactional Programs. PhD
thesis, Brown University, 2010.

[17] D. Lupei, B. Simion, D. Pinto, M. Misler, M. Burcea, W. Krick, and
C. Amza. Transactional Memory Support for Scalable and Transpar-
ent Parallelization of Multiplayer Games. In Proceedings of the Eu-
roSys2010 Conference, Paris, France, Apr. 2010.

[18] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stan-
ford Transactional Applications for Multi-processing. In Proceedings

of the IEEE International Symposium on Workload Characterization,
Seattle, WA, Sept. 2008.

[19] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits,
J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy, J. Olivier,
S. Preis, B. Saha, A. Tal, and X. Tian. Design and Implementation of
Transactional Constructs for C/C++. In Proceedings of the 23rd ACM
Conference on Object Oriented Programming, Systems, Languages,
and Applications, Nashville, TN, USA, Oct. 2008.

[20] C. E. Oancea, A. Mycroft, and T. Harris. A Lightweight In-Place Im-
plementation for Software Thread-Level Speculation. In Proceedings
of the 21st ACM Symposium on Parallelism in Algorithms and Archi-
tectures, Calgary, AB, Canada, Aug. 2009.

[21] W. Ruan, Y. Liu, and M. Spear. STAMP Need Not Be Considered
Harmful. In Proceedings of the 9th ACM SIGPLAN Workshop on
Transactional Computing, Salt Lake City, UT, Mar. 2014.

[22] W. Ruan, T. Vyas, Y. Liu, and M. Spear. Transactionalizing Legacy
Code: An Experience Report Using GCC and Memcached. In Pro-
ceedings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Salt Lake
City, UT, Mar. 2014.

[23] M. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. A Com-
prehensive Strategy for Contention Management in Software Trans-
actional Memory. In Proceedings of the 14th ACM Symposium on
Principles and Practice of Parallel Programming, Raleigh, NC, Feb.
2009.

[24] C. von Praun, L. Ceze, and C. Cascaval. Implicit Parallelism with
Ordered Transactions. In Proceedings of the 12th ACM Symposium on
Principles and Practice of Parallel Programming, San Jose, CA, Mar.
2007.

[25] R. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-H.
Lee. Kicking the Tires of Software Transactional Memory: Why the
Going Gets Tough. In Proceedings of the 20th ACM Symposium on
Parallelism in Algorithms and Architectures, Munich, Germany, June
2008.

[26] F. Zyulkyarov, V. Gajinov, O. Unsal, A. Cristal, E. Ayguade, T. Harris,
and M. Valero. Atomic Quake: Using Transactional Memory in an
Interactive Multiplayer Game Server. In Proceedings of the 14th
ACM Symposium on Principles and Practice of Parallel Programming,
Raleigh, NC, Feb. 2009.

[27] F. Zyulkyarov, S. Stipic, T. Harris, O. Unsal, A. Cristal, I. Hur, and
M. Valero. Discovering and Understanding Performance Bottlenecks
in Transactional Applications. In Proceedings of the 19th Interna-
tional Conference on Parallel Architecture and Compilation Tech-
niques, Vienna, Austria, Sept. 2010.

8 2015/6/15

