
Between All and Nothing–Versatile Aborts
in Hardware Transactional Memory

Stephan Diestelhorst
ARM Ltd., Cambridge, UK

TU Dresden, Germany
stephan.diestelhorst@gmail.com

Martin Nowack
Christof Fetzer

TU Dresden, Germany
martin,christof@se.inf.tu-dresden.de

Michael Spear
Lehigh University, USA
spear@cse.lehigh.edu

Abstract
Hardware Transactional Memory (HTM) implementations are be-
coming available in commercial, off-the-shelf components. While
generally comparable, some implementations deviate from the
strict all-or-nothing property of pure Transactional Memory. In-
stead of trying to hide them, we lift these deviations to a simple
transactional resurrection mechanism that can be used to accel-
erate and simplify both transactional and non-transactional pro-
gramming constructs. We implement our modifications both archi-
tecturally and micro-architecturally in a detailed HTM proposal,
without changes to system software and only light modifications
to the existing HTM microarchitecture. We then show applica-
tion of transactional resurrection in both transactional and non-
transactional parallel programming: hybrid transactional memory;
transactional escape actions; alert-on-update; and transactional sus-
pend / resume.

Categories and Subject Descriptors C.1.2 [Computer Systems
Organization]: Processor Architectures—Multiprocessors; D.1.3
[Software]: Programming Techniques—Parallel Programming

Keywords computer architecture, synchronisation, transactional
memory, cross thread communication

1. Introduction
Originally proposed in 1993, Hardware Transactional Memory[11]
(HTM) has at last gained traction with industry, and leading mi-
croprocessors have incorporated HTM support [13–15]. However,
these products provide a much less exotic flavor of HTM than those
proposed by researchers [26, 27]. They generally offer a compara-
ble best-effort HTM with strong isolation, but very loose capacity
specifications, as capacity is usually determined by size and organ-
isation of the cache used to track the transactional working set.

Clearly, there is a gap between what the hardware provides now
and in the near future,1 and the compelling features suggested in

1 IBM POWER8 2014 [17], IBM zEC12 [2], Intel Haswell [39]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
TRANSACT ’15, June 15–16, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s).
ACM X-XXXXX-XX-X/XX/XX.
http://dx.doi.org/10.1145/nnnnnn.nnnnnn

academia. We show how to extend a basic HTM proposal to bridge
this gap and bring features proposed in academia to product-grade
HTM proposals.

Even though the various HTM proposals and forthcoming prod-
ucts have many similarities in their core feature set, on the periph-
ery the proposals differ, for example how they treat the register
state, and in the availability and design of mechanisms that allow
code to escape through the transactional layer. Comparing, for ex-
ample, Intel’s Transactional Synchronization Extension (TSX) and
AMD’s Advanced Synchronization Facility (ASF), both provide
best-effort transactional memory (Restricted Transactional Mem-
ory (RTM) in Intel’s proposal), but differ in (1) the way they treat
the snapshot / rollback of a transaction’s register state, (2) non-
transactional accesses from within a transaction, and (3) the avail-
ability of a minimum capacity guarantee.

TSX snapshots all registers on transaction start, and restores
them automatically on abort; it also does not provide instructions
to bypass the transactional mechanisms (e.g., loads within a trans-
action that are not tracked, or stores within a transaction that do
not roll back). ASF provides the opposite: registers are not auto-
matically saved and restored, but instead software needs to man-
ually save live registers on transaction start and restore them on
abort. Additionally, ASF allows programs to bypass the transac-
tional mechanisms through the application of an existing instruc-
tion prefix to mark memory operations as non-transactional; these
operations will appear to take effect immediately, rather than at the
end of the transaction. A similar feature was present in the can-
celled Rock processor [4].

We explore the different policies for register snapshotting and
propose transactional resurrection as a lightweight mechanism
which we use to synthesise features such as alert-on-update[34], es-
cape actions[22] and transactional suspend / resume; thus achieving
a rich transactional programming environment.

We focus on extending the HTM interface, but are careful not
to increase hardware verification costs or require changes to exist-
ing system software. In particular, we do not extend the architected
state of applications, and thus the operating system and hypervi-
sor can remain oblivious of the extensions, e.g., when performing
context switches. Our hardware modifications are non-invasive in
nature and do not require any additional associative tracking struc-
tures, or other deep changes to the processor pipeline or the cache
coherence / memory subsystem.

Our contributions in this paper are: we propose the mechanism
of transactional resurrection that allows aborted hardware transac-
tions to resume; we implement these mechanisms as four new in-
structions in a detailed architectural and micro-architectural HTM
prototype (ASF); on top of these, we build transaction suspend / re-
sume, escape actions, and multi-location alert-on-update. Finally,

we evaluate performance overheads and demonstrate the function-
ality of our implementation in a full-system, cycle-level simulator.

The paper is structured as follows: first, we give a brief intro-
duction to ASF in (Section 2) and detail our proposed hardware ex-
tensions (Section 3). We present the different higher level use cases
for the extensions (Section 4,5,6) and conclude with an evaluation
(Section 7) and related work (Section 8).

2. Background: ASF
For our design we extend AMD’s Advanced Synchronization Fa-
cility (ASF) [6]. In this section we briefly review how ASF exposes
core HTM functionality, as well as the unique aspects of ASF that
we use to build a more robust programming environment.

ASF transactions are started with the SPECULATE instruction
which creates a partial checkpoint of the thread state. SPECULATE
also serves as the entry to an abort handler if a transaction fails
to commit. The COMMIT instruction ends a transaction, making all
transactional updates immediately and atomically visible to mem-
ory. Within a transaction, regular x86 MOV instructions and pre-
fixed LOCK MOV instructions (which can be either loads or stores)
are used to distinguish between immediate, irrevocable accesses
that escape the transaction and transactional accesses (i.e., stores
are buffered until commit, and loads are tracked in the cache).
The polarity of the LOCK prefix is determined by selecting either
SPECULATE or SPECULATE INV to start the transaction. The for-
mer executes undecorated accesses non-transactionally and uses
prefixes to mark transactional accesses, while the latter inverts the
scheme and is more similar to TSX, Rock and other HTM pro-
posals. In the remainder of this paper we will explicitly state the
transactional property of accesses.

ASF provides strong isolation: transactions will detect conflicts
with concurrent accesses, even when those concurrent accesses oc-
cur outside of a transaction. Conflicts are resolved through a sim-
ple requester-wins abort policy which always aborts the transaction
that added the conflicting item to its working set first. When per-
core private data caches are used to detect conflicts, this policy can
be supported without any change to the underlying cache coherence
protocol, thereby reducing the verification cost of transactional ex-
tensions to the ISA.

In case of an abort, ASF will undo any speculative memory
writes, but will keep the processor registers and all other memory
updates visible. The CPU redirects execution to the instruction fol-
lowing SPECULATE and provides an error code (in register rax)
with information about the abort reason. The application should
check the error code and branch to an abort handler that will take
appropriate measures (e.g., back-off and restart the transaction).
Aborts in ASF happen synchronously with the condition for the
abort, and may occur between any two instructions in the transac-
tion. As a “best effort” HTM implementation, additional causes of
aborts include, but are not limited to, system calls, exceptions and
interrupts (to include timer interrupts), and capacity/conflict cache
evictions (i.e., due to the transaction’s working set exceeding the
size of the cache).

3. Resurrection–Aborts with Continuation
When an ASF transaction aborts, almost the entire register state is
available to the abort handler. The only exceptions are the registers
used to: convey the abort cause (rax, rflags); restore the stack
pointer (rsp); and change the control flow to the instruction after
the SPECULATE instruction (rip). If the values of these registers
were made available, the abort handler could resume execution
inside the transaction (ignoring for now that the abort would clear
the transaction’s working set).

rel_lock:
MOV [lock] <- rax
...
IF saw_abort
 GOTO handle_abort
COMMIT

A
b

o
rt

 0
 XXX
 *txloc
 rsp_pre
rel_lock

CPU State

V
is

ib
le

In
te

rn
a
l

rax
rflags
rsi
rsp
rip
...

<Abortcode>
<Not-Zero>
&storage

YYY
@JNZ abort

0
XXX

*txloc
YYY

rel_lock

Before After

Abort

a
s
f
_
s
t
o
r
a
g
e

1

2

4

3

5

6

6

abort:
MOV [saw_abort]
 <- $1
CONTINUE

7

8

8

A
b

o
rt

 S
to

ra
g

e// Critical operations
ADD [nontxloc] <- $42

acq_lock:
MOV rax <- $1
XCHG rax <-> [lock]
IF rax
 GOTO acq_lock

SPECULATE rsi
JNZ abort
TXLD rsi <- [txloc]

Figure 1. Basic Functionality of Abort with Continuation

s
p
e
c
u
l
a
t
e

c
o
n
t
i
n
u
e

c
o
m
m
i
t

abort handler

s
p
e
c
u
l
a
t
e

Shared Data w r

ASF (HW) wr

r

wr r r

Log (SW) r

r

rwr

1 22 3 5 66

4

backup

Figure 2. Suspend/Resume mechanism: (1) A hardware transac-
tion is started (SPECULATE with “backup” as argument), but the
transaction body is instrumented so that accesses will also be
logged; (2) In case of an abort, ASF records the instruction pointer
rax and executes the abort handler; (3) If the transaction can be
recovered, the handler starts a new hardware transaction; (4) The
working set is replayed; (5) The transaction resumes the normal
execution (using CONTINUE); (6) The transaction commits its hard-
ware transaction and resets its logs.

One option to place these register values is to use additional,
new registers for either storing the old content of the overwritten
registers, or conveying the necessary additional abort information
and not use existing registers for that purpose. Both variants do
increase the footprint of the architectural register state of appli-
cations. Therefore, operating systems and hypervisors would then
have to be aware of these registers and save / restore them on con-
text switches. To avoid affecting systems software, the register state
must go elsewhere: we let the programmer allocate a buffer to hold
the old values of the overwritten registers and provide the location
of the buffer as a parameter to an extended SPECULATE instruction.

In Figure 1 we present the main interaction: SPECULATE is
extended so that it accepts a memory buffer location parameter (1),
looks up the virtual address and translates it to a physical address,
and also checks write permissions to the location. Any page faults
that could occur when accessing the buffer are thus already resolved
before the transaction starts. In the event of nested transactions,
the SPECULATE instruction ignores this parameter: Since ASF only

supports flat/subsumption nesting, there is no meaning or benefit to
saving multiple register checkpoints.

The CPU keeps the resulting physical address in an internal reg-
ister (2) and starts the transaction. The transaction executes, mutat-
ing the CPU’s register state (3). In case of an abort (4), the pro-
cessor first copies rax, rip, rsi, and rflags into the application-
provided buffer (5), and then updates these registers and control
flow to reflect the abort condition (6), with rsi additionally holding
the buffer address. Furthermore, rsp will no longer be restored:2

this prevents stack smashing due to signals or interrupt handlers
running within the abort handler. The application code checks for
aborts and branches to an abort handler (7). The abort handler can
simply restore rsi and rsp from the the buffer pointed to by rsi
and reproduce the original ASF abort functionality. However, it can
also resume the code in the transaction by restoring all overwrit-
ten registers from the buffer (8). Since existing assembly primitives
cannot restore all registers without overwriting an additional tem-
porary register, we provide a new CONTINUE instruction that per-
forms a simple micro-code sequence to restore the registers.

To simplify the ASF interface, we also provide RDINVMODE and
WRINVMODE instructions. These allow the programmer to detect and
change the behaviour of MOV and LOCK MOV within transactions.

3.1 Handling synchronous aborts asynchronously
ASF transactions are aborted immediately in case there is a reason
for it (e.g. contention). This provides strong isolation guarantees for
transactions but puts the burden on a programmer to reason about
correctness, as a transaction might be aborted at every machine
level instruction. Especially, if non-transactional modifications are
made inside a transaction (e.g. memory allocation), a correct state
has to be preserved. With the proposed extensions, it is easy to
translate HTM’s synchronous aborts into asynchronous aborts. The
abort handler will simply set a thread local variable (saw abort in
the example) signalling an abort, and will then execute CONTINUE.
The code inside the transaction will query the variable at suitable
intervals and then can handle the earlier abort asynchronously.

3.2 Cost
From a hardware perspective, the required changes atop ASF are
minimal: memorising an additional pointer during the execution of
the transaction is easily achieved in either an internal register or
in scratchpad memory. The changes to SPECULATE, aborts and the
new CONTINUE instruction can be effectively coded in microcode.
Pre-checking the allocated buffer location for a proper virtual to
physical address mapping when executing SPECULATE ensures that
the processor will always be able to store the continuation informa-
tion and no abort page fault deadlock can occur.3

Implementing our changes on top of other industry HTM pro-
posals, such as Intel TSX, requires slightly more effort. Our addi-
tions to the abort handler and new instructions remain lightweight,
but non-transactional accesses are usually absent from the cur-
rently specified proposals. Discussion with hardware designers
showed, however, that supporting non-transactional accesses is
neither overly complex nor requires a lot of silicon, but instead
has been postponed due to lack of demand and semantic corner
cases. We show how non-transactional accesses can be used in a
beneficial, controlled, and semantically clear manner.

Best-effort TMs, such as ASF, usually do not virtualise the
transactional resources on context switches; instead, they abort on-

2 The old value of rsp from SPECULATE is stored in the buffer, instead.
3 Since page faults cause aborts, we would otherwise risk deadlock from
the following cycle: abort transaction→ store to buffer to keep overwritten
register values → page fault due to buffer access → abort transaction
because of a page fault

1: procedure SAHTM START . Start a software-assisted HTM
transaction

2: buf1, buf2 ← malloc()
3: (buf1.other, buf2.other)← (buf2, buf1) . Cross-link buf1

and buf2
4: log ← ()
5: SPECULATE buf1 . Start the hardware transaction
6: error ← rax
7: if error 6= 0 then
8: return SAHTM ABORT(rsi, error) . Handle errors and

resume if possible
9: return IN TX

10: procedure SAHTM ABORT(s, error) . Handle aborts, s holds the
resume state

11: push regs
12: retry:
13: if error.type = CONTENTION then
14: rsp← s.abort rsp . Do a full abort
15: return ABORTED
16: else if error.type = FAR then . Resurrect after interrupts,

page-faults
17: (error, s)← SAHTM RESURRECT(s) . Successful

resurrection does not return
18: goto retry
19: else if error.type = ILLEGAL then . Emulate syscalls etc.
20: s← EMULATE(s)
21: (error, s)← SAHTM RESURRECT(s) . Resurrect after

successful emulation
22: goto retry
23: else
24: Handle other abort reasons

25: procedure SAHTM COMMIT
26: COMMIT . Just commit the HTM transaction
27: free(buf1, buf2)

Figure 3. Handling the life-cycle of HTM transactions with sus-
pend / resume extensions. Applicable to both software-assisted and
hardware-extended suspend / resume HTM.

going transactions. In our design we do the same, thereby avoiding
resource-hungry virtualisation. Note that the full architectural CPU
state can be reconstructed by the abort handler even after a con-
text switch: saving the registers clobbered by the hardware abort in
virtual memory lets them survive the context switch, and the OS’s
existing context save / restore mechanism naturally takes care of all
other registers.

4. OS-transparent Transaction Suspend / Resume
Suspend / resume appears in the new IBM POWER8 HTM pro-
posal [13], but relies on additional registers and special handling
in the OS when dealing with suspended transactions. Suspending
a transaction is useful for tolerating short execution of other code,
for example dealing with hardware interrupts, syscalls or excep-
tions. We now show how to enable full transaction suspension and
resume in ASF without changes to the OS, by building upon the
simple extensions we proposed in Section 3.

Our general approach is to let the transaction abort instead of
suspending it, and then offer a mechanism to resurrect the aborted
transaction when resumption is necessary. From an architectural
perspective, this means that suspended transactions are the same
as aborted transactions, and thus do not require special treatment
by the OS. Transaction-aware OS can use transactions without
concerns for the application’s usage of the transactional memory
resources and legacy OS can handle applications using HTM. Our
extended abort mechanism allows full access to all registers in the

28: procedure SAHTM RESURRECT(s) . s holds the resume state
29: if s.resume ip ∈ lines(31 – 36, 41 – 48) then . Aborted while

resuming
30: s← s.other . Squash abort recursion
31: SPECULATE s.other . Start HTM container transaction
32: error ← rax
33: if error = 0 then . Successful start of HTM container
34: SAHTM REPLAY() . Replay transactional working set from

SW log
35: pop regs
36: CONTINUE s . Restore full state and return to resurrected

transaction.
37: else . Abort in the resurrected transaction
38: s← rsi . Update resumed state from new abort site
39: s.abort rsp← s.other.abort rsp
40: return (error, s) . Outer logic handles abort condition and

retries

41: procedure SAHTM REPLAY . Replay and validate transactional
accesses

42: for (addr, val, rw) ∈ log do . from the SW log
43: if rw = READ then
44: txload tmp← [addr] . Add to read set
45: if val 6= tmp then . and validate value
46: ABORT CONTENTION . Use HTM abort to

unravel validation failure
47: else
48: txstore [addr]← val . Redo stores

49: procedure SAHTM TXLOAD(addr) . Software-assisted read barrier
50: log ← (log, (addr, ∅, READ)) . Append a sentinel

protecting against an abort
51: . between line 52 and 53 missing replay of addr
52: txload val← [addr] . Add to HTM read set
53: (log, (addr, ∅, READ))← (log, (addr, val, READ)) .

Update with proper read value
54: return val

55: procedure SAHTM TXSTORE(addr, val) . Software-assisted write
barrier

56: log ← (log, (addr, val,WRITE)) . Append to log
57: txstore [addr]← val . Add to HTM write set

Figure 4. Resurrection and replay of aborted transactions, logging
read / write barriers. For simplicity, we omit handling different
sizes in SAHTM TXSTORE and SAHTM TXLOAD.

abort handler, so that it can restore the transaction’s register state
exactly as it was at the time of the suspension (abort).

In Figure 2, we depict the time line of a suspend / resume cycle.
Resume / resurrection is initiated in the abort handler when the
suspend condition has been handled, for example when control
has passed back to the application after invocation of an hardware
interrupt handler. A new transaction is started with SPECULATE
with a new buffer for storing the abort state and CONTINUE then
restores the suspended transaction’s register state and resurrects it.
Figure 3 shows the general behaviour in pseudo-code.

Clearly, making available all register state of the transaction to
the abort handler is not enough to resurrect the aborted transaction,
because the transactional working set in memory is rolled back in
ASF upon any abort. We present two options to deal with resur-
recting the transactional working set: (1) tentatively keeping trans-
actional state across aborts in hardware, or (2) adding minimal log-
ging instrumentation in software.

Inspecting the different abort reasons, we find that not all of
them require immediate roll-back of the working set. In partic-
ular, for aborts not caused by violations of the integrity of the
working set (i.e., aborts other than (certain types of) contention

1: procedure MESSYHTM RESURRECT . Resurrect with additional
HW support

2: if s.ip ∈ lines(4 – 8) then
3: s← s.other . Squash abort recursion.
4: SPEC RESURRECT s.other . Start HTM transaction using

working set still in cache
5: error ← rax
6: if error = 0 then . Successful resurrection
7: pop regs . No need to restore the read / write set
8: CONTINUE s . Restore full state and return to resurrected

transaction.
9: else . Abort in the resurrected transaction

10: s← rsi . Update resumed state from new abort site
11: s.abort rsp← s.other.abort rsp
12: return (error, s) . Outer logic handles abort condition and

retries

13: procedure HTM TXLOAD(addr) . Read barrier for resurrection
with HW support

14: txload val← [addr]
15: return val

16: procedure HTM TXSTORE(addr, val) . Write barrier for
resurrection with HW support

17: txstore [addr]← val

Figure 5. Hardware support in the caches to tentatively keep the
aborted transaction’s working set significantly simplifies the resur-
rection logic.

or capacity evictions), it may be possible to keep the transactional
state tentatively in the cache and make it available to the resur-
recting SPECULATE / CONTINUE pair. We propose Messy-HTM that
extends the SPECULATE instruction so that the cache can distin-
guish between a request to start with a clean transactional state
(SPECULATE) and attempts to reactivate the old transactional state
and aborts when this fails (SPEC RESURRECT). To keep the OS un-
modified, the speculative state is cleared when the processor sees an
event that causes a TLB flush, usually indicating a context switch.
Nevertheless, the proposed suspension / resurrection mechanism
can tolerate brief kernel invocations, for example due to interrupts
or system calls from within the transaction.

If lazy clearing of transactional state proves too complex for
an HTM implementation, or if support for surviving full con-
text switches is desired, we can employ a lightweight hybrid TM
approach of Software-assisted HTM (SAHTM): transactional ac-
cesses can be manually logged in a thread local buffer, which is
used to validate and replay the hardware transaction upon resurrec-
tion.4 We store in the buffer transactionally read and written val-
ues, the associated addresses, access sizes and access types (read
/ write). The buffer is updated during transactional execution by
using non-transactional stores. Since the HTM is used to provide
proper conflict detection and versioning, the log is append-only
and never read during normal operation: buffered updates that are
stored in the log are also performed as part of the transaction, and
loads that are tracked in the log need not be validated, since these
loads are also part of the transaction’s working set. To reduce the
overhead of logging, we combine the address and meta-data into a
single 64 bit word (note that virtual addresses are only 48 bit wide
in the current x86-64 specification). We contrast the details for res-
urrection and the respective read and write barriers in Figure 4 with
SAHTM and in Figure 5 with Messy-HTM that keeps the cache
content available. In combination with full hybrid TM systems em-

4 Note that software and hybrid TM systems already require this instrumen-
tation, and that compiler support for automatically adding this instrumenta-
tion is available in several production-grade compiler frameworks.

ploying STM for large transactions, SAHTM’s logging mechanism
allows seamless transition from SAHTM to STM execution with-
out requiring an abort: the SAHTM’s access log is replayed into the
STM’s tracking data structures. In total, we add points on the per-
formance vs capacity / functionality spectrum. In Section 7 we will
quantify the performance characteristics of each of these options.

4.1 Cost
There is no additional hardware cost associated with the logging-
based SAHTM variant of resurrecting transactions, and even keep-
ing the transactional working set in the caches with Messy-HTM re-
quires only minimal changes. The cache remains unchanged from
an existing cache-based HTM design, especially if that HTM al-
ready offers non-transactional accesses, as is the case with ASF.
We change the handling of aborts: the core will not clear the trans-
actional state in the caches when encountering an interrupt, excep-
tion, or instruction that calls into the OS. Furthermore, the core
needs to memorise the fact that there is a suspended transaction and
detect TLB flushes. The cost for these modifications in terms of sil-
icon real-estate is small, but they incur a design and verification
cost. We acknowledge the cost and offer an intermediate update
step with our logging-based SAHTM approach.

The OS does not need to manage the transactional state of the
application with our extensions, because all detection of context
switches happens in hardware conservatively and is handled by
fully aborting the transaction. Because the register state of each ap-
plication reflects the aborted state already, no TM-specific update
of the architectural state has to occur during / for a context switch.
Accessing transactionally written data when the transaction is sus-
pended is dangerous in all suspend / resume proposals, because
hardware may need to drop the transactional updates to ensure the
consistency of the working set. Our SAHTM approach side-steps
the issue by hiding the transactional updates from the invoked OS
routines. If data needs to be reliably transferred into the OS han-
dler through memory, ASF’s non-transactional stores provide a safe
way to protect against spontaneously disappearing working sets. It
is also possible to instrument library codes so that they perform a
lookup in the log. This is reminiscent of techniques for achieving
open nesting in BEHTM [19]. We will show a way to safely handle
state transferal into the kernel in Section 5.

5. Escape Actions from Hardware Transactions
ASF already allows individual loads and stores to escape from a
transaction. Composing longer code blocks escaping these mech-
anisms (as in [40]) is complicated due to the synchronous nature
of aborts in ASF; whenever a condition for abort is detected (to
include concurrent memory conflicts and timer interrupts), control
flow can transfer from the middle of a basic block into the abort
handler. This is usually not an issue with transactional code since
all side-effects are tracked and rolled back. However, interrupting
an escape action while it has not finished executing can leave es-
caped data in an inconsistent state.

Given our mechanism for suspend/abort from Section 4, it is
straightforward to provide support for escape actions as well. For
simplicity, we adhere to the principles set forth for delegated escape
actions [19], namely that an escape action’s accesses are disjoint
with respect to the calling transaction’s read and write sets.

Without loss of generality, we assume that escape actions con-
sist entirely of non-transactional code (i.e., they use RD/WRINVMODE
at their entry and exit to set and restore this status). To support es-
cape actions, we update a thread-local field F prior to beginning
the escape action. Should an abort occur during the escape action,
the abort handler first checks F : if it is set, the handler memorises
information about the abort in another field H , and then uses a
CONTINUE to immediately resume the escape action. In this man-

ner, the (non-transactional) escape action code will not be aborted
while holding locks, or while at some point where invariants may
not hold. Upon completion of the escape action, the code registers
any undo actions related to the escape action, clears F , and checks
H . If H indicates that an abort occurred during the escape action,
the program uses the additional information saved by the handler
to complete the abort, closely resembling an explicit abort in a
software TM implementation.

In the event that the escape action requires a context switch or
system call, we seamlessly transition to a more heavyweight sus-
pend/resume operation. This may require the transaction to abort
and restart in SAHTM mode, if accesses have not been logged.
However, such a transition is only necessary if the system call can-
not be emulated; otherwise, the CONTINUE would immediately re-
turn to the OS trap instruction, which would abort the newly started
transaction and return to the abort handler. By switching on the
fly, we can suppress aborts for lightweight escape actions, while
still supporting escape actions that must be executed from a non-
transactional context.

5.1 Hardware Cost and OS Interaction
There is no additional hardware cost to provide support for escape
actions. With respect to OS interaction, the common case again re-
quires no support. However, run-time libraries that ought to run as
escape actions will require wrapper code to manage the F and H
flags. If an escape action must access state modified by the transac-
tion, then the action must be rewritten to check the access logs man-
aged by the transaction, and the transaction will require SAHTM
instrumentation. More complex software-based techniques are pos-
sible, wherein concurrent transactions are blocked and the transac-
tion executing the escape action temporarily becomes irrevocable.
In the absence of workloads requiring such functionality, the cost
of this approach is likely too high.

Note, too, that it is not necessary to execute every escape ac-
tion as a non-transactional operation. With the new instructions
to control whether LOCK prefixes indicate transactional or non-
transactional accesses, binaries (such as libc functions) may be
called in either an escaping fashion or through making all their
memory references transactional. By storing the current mode of
the transaction (inverted / non-inverted, attempt continue / abort)
in a thread-local variable, we can ensure that the right strategy is
employed in the abort handler, and that the best approach is taken
for each library function.

6. Multi-Location Alert-on-Update
Alert-on-update (AOU) is a mechanism that uses transactional read
set tracking to generate user-level signals upon certain cache evic-
tions [34]. To synthesise alert-on-update on top of our extended
abort behaviour, we begin an ASF transaction via the SPECULATE
command, use transactional (LOCK-prefixed) loads in place of AOU
loads, and keep all other memory accesses of the program non-
transactional. We also non-transactionally manage a record of all
AOU-loaded locations (Figure 6). Whenever a monitored (AOU)
location is written to by another core and evicted from the cache,
the ASF transaction aborts and jumps to its abort handler, which
serves as (or chains to) the alert handler (replacing the abort han-
dling in Figure 3). Note that changes to program state will not roll
back on transaction abort, since we have chosen in this case for the
default behaviour of loads and stores to be non-transactional.

After the handler finishes resolving the alert, it starts a new
transaction, re-adds the monitored location(s) to the working set,
and continues execution at the previously aborted location through
a CONTINUE instruction. Due to the overlapping nature of starting
a transaction before executing CONTINUE to restore the state of the
preceding transaction, we must take care to use alternating buffers

1: function ALOAD(address) . Adds an alert on update of location
address

2: repeat
3: val1 ← [address]
4: locs← locs \ (address, ∗) ∪ (address, val1) . Add

value early to prevent data race
5: txload val2 ← [address]
6: until val1 = val2 . Ensure that this was a race-free ALOAD
7: return val1

Figure 6. Implementing alert-on-update with ASF.

for the storage of the clobbered registers. To prevent unbounded
abort recursion, we flatten aborts in the overlap region. The abort
handler will also be invoked for other reasons than changes in the
monitored location(s), such as syscalls and timer interrupts, but
those cases can be discerned through the abort condition codes pre-
sented to the abort handler by ASF. Continuing the transaction is
usually enough to continue execution, but some cases require sim-
ple emulation of instructions illegal within transactions (such as
I/O-related system calls). Often, the mechanisms discussed in pre-
vious sections suffice for this emulation. In other cases, lightweight
instrumentation is required to (a) COMMIT the SPECULATE opera-
tion, then perform the operation, and then begin a new SPECULATE
and restore all AOU loads. Note that this is simpler than suspend/re-
sume, because there is no transactional state that must be protected
during the (escaped) syscall.

6.1 Privatisation-safe STM with AOU
To demonstrate the utility of AOU, we consider its use to strengthen
the correctness guarantees of an STM algorithm without adding
overhead. In general, language-level implementations of transac-
tional memory (TM) require the TM implementation to be privati-
sation safe [1]. Roughly, this means that execution with transac-
tions appears equivalent to an execution in which all critical sec-
tions are protected by a single global lock [20]. This, in turn, boils
down to two problems [35]: when committing a transaction T that
logically transitions some region of memory R to a state in which
other threads can no longer access R transactionally, T must be
sure that (a) any transaction that committed or aborted before T
committed must not still be cleaning up its changes to R5, and (b)
any transaction still running will not continue to use data in region
R. These two problems are sometimes called the “delayed cleanup”
and “doomed transaction” problems.

The most general solution to both problems is a heavyweight
quiescence mechanism, in which every committing writer transac-
tion must wait for all concurrent transactions to commit or abort
and clean up before it departs from its commit function. Decou-
pled solutions to the problem tend to scale better, but these so-
lutions rely on polling to solve the doomed transaction problem:
when T commits, concurrent doomed transaction D may be in the
midst of accessing R, and will not determine that it should abort
until its next access of shared memory. The problem with this ap-
proach is that when T wishes to deallocate R, it cannot prevent
concurrent accesses by D. The only known solution in this case is
to change the allocator, so that T ’s deallocation is deferred until D
completes [12]. This mechanism, also popular in RCU synchroni-
sation, can result in an unbounded delay between when T commits
and when R is finally reclaimed. Consequently, production STM
implementations choose the quiescence approach.

5 We use the term “clean up” to refer to write-back in STM implementations
that use commit-time locking, and also to refer to undo operations at
abort time in STM implementations that lock and modify memory before
reaching their commit point.

Our implementation of AOU enables the use of decoupled vali-
dation without incurring the risk of unbounded delay during recla-
mation. The key observation is that if transactions use AOU to mon-
itor the notification location that they formerly polled, then they
will be notified immediately when it changes, due to transactional
abort. The notified thread can then ensure its validity with respect
to the newly committed transaction. If it remains valid, it can re-
sume; otherwise it will abort. Crucially, the interruption, valida-
tion, and abort of a transaction will occur between when T com-
mits and when D might next access R. That is, if T deallocates R,
it cannot affect D so long as D’s validation does not access R. In
practical terms, this prohibits algorithms that use value-based vali-
dation [8, 24], but otherwise carries no cost.

In prior work on AOU [34], the AOU hardware monitored
some subset of read locations and metadata to avoid validation.
In contrast, we use the AOU mechanism as a polling-free, low-
latency, immediate cross-core (cross-thread) communication mech-
anism that invokes the STM’s validation handler upon the commit
of every writing transaction; this requires AOU tracking of only a
single location, and is thereby beneficial for even the most capacity-
constrained HTM implementations. Since our AOU implementa-
tion is built atop our transparent suspend/resume mechanism, it is
practical: system calls and quantum expirations will cause a trans-
action to resume from inside its validation handler, and aborts dur-
ing calls to lock-based libraries (such as malloc) can be delayed
safely. Furthermore, the use of AOU-based notification simplifies
the STM algorithm, eliminating some comparisons for corner-case
behaviours.6

6.2 Hardware Dependence
In contrast to the transactional suspend and resume mechanism
from Section 4, with AOU we employ the transactions as an auxil-
iary wrapper to non-transactional code. Therefore, we expect to see
non-transactional accesses as the norm, which is well reflected by
ASF’s (non-inverted) SPECULATE instruction. For hardware imple-
mentations with small HTM implementations, programming with
AOU will side-step the capacity limitations of the HTM, while still
gaining some benefits relative to a pure STM library.

As before, the OS / hypervisor can remain oblivious of usage of
AOU in application code. This is an improvement over the original
alert-on-update proposal [34]. However, in some cases it may be
necessary to wrap system calls as escape actions that run outside of
a transactional context, in order to prevent infinite aborts at the trap
instruction. As discussed above, these escape actions are simpler
than those in Section 5: since we aren’t using the HTM for data
versioning, we can simply commit the SPECULATE region, run the
escape action, and then start a new SPECULATE region.

7. Evaluation
In this section, we evaluate the performance of our extensions.
All experiments were performed on Marss86, a cycle-accurate x86
simulator [25]. We extended Marss86 with ASF support based on
PTLsim-ASF [5],7 and then added the features discussed in this pa-
per. Our evaluation of AOU-enhanced STM uses benchmarks from
the RSTM [33] open-source library, and we evaluate suspend/re-
sume performance in the TinySTM [5] toolchain. Experiments ran
for 10,000 successful transaction commits per thread, and all re-

6 These simplifications, while useful, are lengthy and limited in novelty. We
intend to distribute them via open-source channels, but due to limited space
cannot include code listings in this submission.
7 We ported and heavily extended code from PTLsim-ASF (https://
github.com/stephand/ptlsim/tree/ptlsim_asf) to work with the
new memory hierarchy in Marssx86 and made changes available at https:
//bitbucket.org/stephand/marss86-asf.

https://github.com/stephand/ptlsim/tree/ptlsim_asf
https://github.com/stephand/ptlsim/tree/ptlsim_asf
https://bitbucket.org/stephand/marss86-asf
https://bitbucket.org/stephand/marss86-asf

 2500

 5000

 7500

 10000

 12500

 15000

 1 2 4 8 16

T
h

ro
u

g
h
p

u
t

(t
x
/m

s
)

RB-Tree

Orec-ELA
Orec-ELAPQ 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 16

Number of Cores

Linked List

Orec-ELA + AOU
Orec-ELA + AOUQ

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 4 8 16

T
h

ro
u
g

h
p

u
t

(t
x
/m

s
)

Number of Cores

Hashset

Linear Speedup

Figure 7. Throughput for RSTM OrecELA with AOU-enhanced
privatization safety.

sults are the average of three (RSTM RB-Tree and Hashset) or six
(RSTM Linked List) trials. Our simulated machine features a mod-
ern processor with 16 out-of-order cores, with per-core L1 and L2
caches and a shared L3 cache, and realistic default sizes for them
and DRAM. All experiments run in full-system simulation, with
Ubuntu Linux 12.04 LTS. All RSTM code was compiled with GCC
4.6.3 and the “-O3 -flto” optimisation options. The TinySTM-based
experiments use the Clang version of DTMC compiler [5] using
LLVM 3.2 with optimisation “-O3 -flto”.

7.1 Alert on Update for Privatisation-Safety
We enhance two variants of RSTM’s OrecELA STM implemen-
tation with our AOU implementation outlined in Section 6: Ore-
cELA and OrecELA + AOU use ordered commit departure, Ore-
cELAPQ and OrecELA + AOUQ perform quiescence to achieve
privatization-safety. The AOU-enhanced variants do not require de-
layed reclamation and therefore are not prone to unbounded delays
between memory free and actual availability of the memory. In-
stead, they can immediately reclaim memory at transaction commit
without inducing segmentation violations in doomed readers.

We use three data-structures implementing the integer set inter-
face that are provided with the RSTM source code: ListBench, a
singly linked list; HashBench, a hash table; and TreeBench, using
a Red-Black tree to store the set. We vary the thread count, fix the
total number of transactions and keep other parameters at their de-
faults (set size of 256 elements, pre-filled to 128 elements, value
range 0 - 255, update rate 66%).

Comparing the performance for the three data structures in Fig-
ure 7, we find that, overall, performance of the four solutions is
comparable. The linked list produces large levels of contention that
cause significant jitter in our results at higher thread counts. The
AOU-based STMs change the timing of validation due to their syn-
chronous signalling. In the linked list, abort characteristics change
for long transactions, because a short committing writer causes an
immediate validation and abort of a long, uncommitted transaction
that has traversed the list. In the non-AOU STM variants, that long
transaction would also be doomed but detect the conflict only when
it tries to commit.

In the hash set experiment, all transactions are small and con-
flict rarely. For the AOU-enabled cases, the frequent writers force
many AOU-induced revalidations causing overhead for the short
transactions. The net effect is an increase of the effective length of
the transactions. The present performance delta reflects this, but we

 0

 20000

 40000

 60000

 80000

 1 2 4 8 16

T
h

ro
u

g
h
p

u
t

(t
x
/m

s
)

RB-Tree

 0

 5000

 10000

 15000

 20000

 1 2 4 8 16

Linked List

SAHTM
SAHTM opt

 0

 20000

 40000

 60000

 80000

 1 2 4 8 16

T
h

ro
u
g

h
p

u
t

(t
x
/m

s
)

Number of Cores

Hashset

Global Lock
Linear Speedup

 0

 10000

 20000

 30000

 40000

 1 2 4 8 16

Number of Cores

SkipList

STM WT
HTM

Figure 8. Throughput for Intset benchmark using different TM
implementations

argue that the additional application-level guarantees outweigh the
performance impact of this application worst-case.

In summary, we show that our multi-location AOU prototype
(based on the extensions to our best-effort HTM ASF from Sec-
tion 3) works with small overhead and can be used to enhance an
STM library. We found that some work in the STM logic was nec-
essary to adapt it to handle the AOU-induced notifications arriving
at arbitrary code locations. To mitigate, we selectively switched be-
tween synchronous and asynchronous handling (see Section 5).

7.2 Transaction Suspend / Resume
For testing the transaction suspend / resume with SAHTM, we base
our work on the HyTM implementation in TinySTM which uses
plain ASF HTM with minimal additional software support to im-
plement serial irrevocable execution and memory management [5].
We extend read and write accesses to additionally log accessed ad-
dresses and values as described in Section 4. To reduce memory
pressure and to keep the log overhead small, we encode additional
meta data (size of the accessed data, read/write operation) in the
upper 8 bits of the address part of the log entries.

TinySTM contains four benchmarks implementing the integer
set interface: linked list, skip list, hash set, and red-black tree. We
evaluate each with an initial capacity of 256 elements and an update
rate of 20%. Figure 8 shows the throughput achieved for an increas-
ing number of cores for those benchmarks. We compare four dif-
ferent transactional memory implementations: Global Lock which
uses a single global lock for synchronisation - no accesses inside
a transaction are instrumented; STM WT a state-of-the-art write
through implementation for Software TM [28]; HTM the hardware
TM implementation using ASF as described above; and our new
implementation, SAHTM, that adds the logging read/write barri-
ers. SAHTM opt is a proof-of-concept hand-optimised binary that
bypasses shortcomings in LLVM’s optimisation passes, in particu-
lar hoisting loop invariants across barriers and handling inline as-
sembly with memory operands. We manually performed these op-
timisations on the SAHTM binary and briefly show first results for
linked list.

Looking at the throughput and transactional statistics (not
shown due to space limitations), we find that the RB-Tree and
Hash Set scale well, and HTM and SAHTM behave very simi-
larly for all core counts. The difference in throughput is due to
the additional overhead of the read/write barrier implementation.
For higher core counts, (> 8) SAHTM’s scalability shows a more
similar behaviour to STM. The reason for that is the additional

overhead of the barriers and the need to replay the logs in case of
contention.

Both Linked and Skip List are a high-intensity workload for
all of our TM implementations: the linear scanning loop exposes
every bit of added overhead, due to very little other logic and pre-
dictable access patterns. SAHTM has a slight performance advan-
tage over the STM implementation but the logging overheads are
much more exposed than in RB-Tree and Hash Set. HTM scales
better, because its list traversal loop is extremely small and the
additional logging in SAHTM consumes memory and core exe-
cution bandwidth–causing significant slowdown. The major rea-
son for SAHTM’s overhead is missed optimisation opportunities
by the compiler (appropriate hoisting and reuse of the pointer to
the log structure instead of fetching them for each iteration in the
loop) adding superfluous instructions and extra memory traffic. Our
manually optimised prototype (SAHTM opt) for Linked List shows
the potential benefit from these optimisation which should be per-
formed by the compiler. This implementation is almost on par with
the HTM implementation for the thread counts we managed to test.

In summary, our suspend/resume experiments show that it is
indeed possible to implement transaction suspend/resume through
resurrection of aborted transactions in an OS-transparent way. For
data-structures with complex access patterns, the additional log-
ging instructions and memory traffic are apparently effectively
hidden in branch mis-predictions, cache misses and available
instruction-level parallelism. We see strong hints that carefully con-
trolling the optimisation in our framework can significantly drive
down the execution resource demand of our logging code and thus
can have low overheads also in simple data access patterns.

8. Related Work
For nearly a decade, researchers have been exploring mechanisms
for exploiting bounded HTM resources in more robust and pro-
grammable ways. One of the earliest proposals, from Zilles and
Baugh [40], introduced suspend/resume as a mechanism for al-
lowing hardware transactions to avoid the size constraints of HTM
when executing operations that either (a) are known to never cause
conflicts, or (b) are best served with other concurrency control
mechanisms (e.g., memory allocation). In that proposal, the hard-
ware still controlled the execution of the transaction, with their ex-
tensions serving only as a means of temporarily suspending the
transaction. Furthermore, without ASF-style HTM resources, this
work required significant changes to the underlying HTM, whereas
our implementation can leverage existing ASF support to require
only a minimal amount of additional hardware and software exten-
sion. Transaction escape actions [22] provided a similar feature in
LogTM, though again there was a noticeable hardware cost.

A more aggressive approach to exploiting bounded HTM is ex-
hibited by the many hardware accelerated software TM (HASTM)
systems. These proposals typically extended a traditional ISA with
features resembling TM hardware, most notably mechanisms for
tracking locations accessed within a region [30, 34, 36]. While
these features closely resembled those of more complete HTM pro-
posals, the control of transactions was fully delegated to a software
library. Additional proposals offered programmable control of data
versioning and buffering [21, 31, 32]. This offered low enough
overhead to be competitive with full HTM implementations, but
typically with less hardware complexity. At the extremes, Casper et
al. showed that an out-of-core FPGA-based prototype could deliver
strong transactional performance [3], and Carouge et al. showed
that HTM resources could make an existing STM algorithm lock-
free without affecting performance [10].

Our work on hybrid TM is inspired by a wide variety of algo-
rithms proposed in the literature. These algorithms attempt to build
a runtime system in which some transactions are fully controlled

by software, and others accelerated by hardware. The benefit of
such a system is that there is a graceful fallback for those transac-
tions whose memory accesses or running times extend beyond the
limits of the HTM subsystem. However, small, short transactions
must, in turn, sacrifice some performance in order to be compati-
ble with these software transactions. Initial hybrid systems focused
on correctness and non-blocking progress [16], after which the fo-
cus turned to systems in which transactions operated in distinct
modes (i.e., software-only, hardware-only, and serial) [5, 18]. Later
works showed that true concurrency between hardware-controlled
and software-controlled transactions was possible, but that spe-
cific characteristics of the hardware (most notably the availability
of non-transactional loads and stores within the hardware transac-
tion) was critical to achieving good performance [9, 29]. This paper
builds on prior work by showing that minor extensions to the HTM
can simplify the implementation of such systems without affecting
performance.

Several groups have also explored the use of HTM resources for
purposes orthogonal to scalable concurrent execution of language-
level transactions. The original AOU paper [34] proposed several
uses of AOU outside of TM implementation, such as for reducing
the cost of polling in event-based systems and implementing a lim-
ited form of active messages [37]. Neelakantam et al. [23] showed
that hardware TM extended with a self-abort instruction could be
used by compilers for speculative unsafe optimisation. Most re-
cently, Unsal et al. have shown that HTM resources could be used
both to detect and prevent transient faults during sequential execu-
tion [38], and as a mechanism for lowering power consumption by
running a processor at an extremely low voltage, and then using
transactional rollback and recovery to compensate for faults that
occur during execution [7].

9. Conclusion
In this paper, we presented small modifications to the ASF HTM
proposal that change abort handling to allow transaction resurrec-
tion, and added two instructions for explicitly managing the polar-
ity of transactional / non-transactional accesses. With only these
two minor extensions, neither of which requires extensive hard-
ware verification or changes to cache structures and protocols, we
showed that Alert-on-Update, Escape Actions, and Suspend / Re-
sume can all be supported in an otherwise relatively simple hard-
ware TM. We believe that our modifications lie in the same com-
plexity realm as the differences between the various HTM industry
proposals and thus can be implemented in actual hardware, for ex-
ample as an extension to first generation HTM support. This is a
promising direction that can turn these synchronisation extensions
into synchronisation and speculation extensions that support a rich
transactional programming environment.

Acknowledgments
Stephan received funding from the European Community’s Seventh
Framework Programme [FP7/2007-2013] under the ParaDIME
Project, grant agreement No. 318693, and developed related, initial
ideas while employed at Advanced Micro Devices, Inc. At Lehigh
University, this work was supported by the US National Science
Foundation under grant CNS-1016828 and CCF-1218530. Mar-
tin received funding by Deutsche Forschungsgemeinschaft (grant
agreement No. FE 1035/1-2.)

References
[1] A.-R. Adl-Tabatabai and T. Shpeisman (Eds.). Draft Specification

of Transactional Language Constructs for C++, Aug. 2009. http:
//software.intel.com/file/21569.

http://software.intel.com/file/21569
http://software.intel.com/file/21569

[2] J. Brewer. IBM Unveils zEnterprise EC12, a Highly Secure System
for Cloud Computing and Enterprise Data. http://www-03.ibm.
com/press/us/en/pressrelease/38653.wss, Aug. 2012.

[3] J. Casper, T. Oguntebi, S. Hong, N. Bronson, C. Kozyrakis, and
K. Olukotun. Hardware Acceleration of Transactional Memory on
Commodity Systems. In Proceedings of the 16th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems, Newport Beach, Calif., Mar. 2011.

[4] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, and
S. Yip. Rock: A High-Performance Sparc CMT Processor. IEEE
Micro, 29(2):6–16, March–April 2009.

[5] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riv-
iere. Evaluation of AMD’s Advanced Synchronization Facility within
a Complete Transactional Memory Stack. In Proceedings of the Eu-
roSys2010 Conference, Paris, France, Apr. 2010.

[6] J. Chung, L. Yen, S. Diestelhorst, M. Pohlack, M. Hohmuth, D. Gross-
man, and D. Christie. ASF: AMD64 Extension for Lock-free Data
Structures and Transactional Memory. In Proceedings of the 43rd
IEEE/ACM International Symposium on Microarchitecture, Atlanta,
Ga., Dec. 2010.

[7] A. Cristal, O. Unsal, G. Yalcin, C. Fetzer, J.-T. Wamhoff, P. Felber,
D. Harmanci, and A. Sobe. Leveraging Transactional Memory for
Energy-efficient Computing below Safe Operation Margins. In Pro-
ceedings of the 8th ACM SIGPLAN Workshop on Transactional Com-
puting, Houston, TX, Mar. 2013.

[8] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. In Proceedings of the 15th
ACM Symposium on Principles and Practice of Parallel Programming,
Bangalore, India, Jan. 2010.

[9] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. Scott, and
M. Spear. Hybrid NOrec: A Case Study in the Effectiveness of Best
Effort Hardware Transactional Memory. In Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Newport Beach, Calif., Mar. 2011.

[10] Francois Carouge and Michael Spear. A Scalable Lock-Free Universal
Construction with Best Effort Transactional Hardware. In Proceedings
of the 24th International Symposium on Distributed Computing, Cam-
bridge, Mass., Sept. 2010.

[11] M. P. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In Proceedings of the 20th In-
ternational Symposium on Computer Architecture, San Diego, Calif.,
May 1993.

[12] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. Hertzberg. A
Scalable Transactional Memory Allocator. In Proceedings of the Inter-
national Symposium on Memory Management, Ottawa, Ont., Canada,
June 2006.

[13] Power ISA(tm) Transactional Memory. IBM(R), 2.07 edition, Dec.
2012.

[14] Intel(R) Architecture Instruction Set Extensions Programming Refer-
ence. Intel Corp., 319433-012a edition, Feb. 2012.

[15] C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory Archi-
tecture and Implementation for IBM System z. In 45th Int. Symp. On
Microarchitecture, 2012.

[16] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid
Transactional Memory. In Proceedings of the 11th ACM Symposium
on Principles and Practice of Parallel Programming, New York, N.Y.,
Mar. 2006.

[17] H. Le, G. Guthrie, D. Williams, M. Michael, B. Frey, W. Starke,
C. May, R. Odaira, and T. Nakaike. Transactional memory support
in the IBM POWER8 processor. IBM Journal of Research and Devel-
opment, 59(1):8–1, 2015.

[18] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased Transactional
Memory. In Proceedings of the 2nd ACM SIGPLAN Workshop on
Transactional Computing, Portland, OR, Aug. 2007.

[19] Y. Liu, S. Diestelhorst, and M. Spear. Delegation and Nesting in
Best Effort Hardware Transactional Memory. In Proceedings of the

24th ACM Symposium on Parallelism in Algorithms and Architectures,
Pittsburgh, PA, June 2012.

[20] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. Hud-
son, B. Saha, and A. Welc. Practical Weak-Atomicity Semantics for
Java STM. In Proceedings of the 20th ACM Symposium on Parallelism
in Algorithms and Architectures, Munich, Germany, June 2008.

[21] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun. An Effective Hybrid Trans-
actional Memory System with Strong Isolation Guarantees. In Pro-
ceedings of the 34th International Symposium on Computer Architec-
ture, San Diego, Calif., June 2007.

[22] M. Moravan, J. Bobba, K. Moore, L. Yen, M. Hill, B. Liblit, M. Swift,
and D. Wood. Supporting Nested Transactional Memory in LogTM.
In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, San
Jose, Calif., Oct. 2006.

[23] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles.
Hardware Atomicity for Reliable Software Speculation. In Proceed-
ings of the 34th International Symposium on Computer Architecture,
San Diego, Calif., June 2007.

[24] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A Dynamic
Binary-Rewriting Approach to Software Transactional Memory. In
Proceedings of the 16th International Conference on Parallel Archi-
tecture and Compilation Techniques, Brasov, Romania, Sept. 2007.

[25] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSSx86: A Full
System Simulator for x86 CPUs. In Design Automation Conference
2011 (DAC’11), 2011.

[26] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Mem-
ory. In Proceedings of the 32nd International Symposium on Computer
Architecture, Madison, Wis., June 2005.

[27] H. E. Ramadan, C. J. Rossbach, and E. Witchel. Dependence-aware
Transactional Memory for Increased Concurrency. In Proceedings of
the 41st annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 246–257. IEEE Computer Society, 2008.

[28] T. Riegel, C. Fetzer, and P. Felber. Time-Based Transactional Mem-
ory with Scalable Time Bases. In Proceedings of the 19th ACM Sym-
posium on Parallelism in Algorithms and Architectures, San Diego,
California, June 2007.

[29] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimiz-
ing Hybrid Transactional Memory: The Importance of Nonspeculative
Operations. In Proceedings of the 23rd ACM Symposium on Paral-
lelism in Algorithms and Architectures, June 2011.

[30] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural Support
for Software Transactional Memory. In Proceedings of the 39th
IEEE/ACM International Symposium on Microarchitecture, Orlando,
FL, Dec. 2006.

[31] A. Shriraman, M. F. Spear, H. Hossain, S. Dwarkadas, and M. L. Scott.
An Integrated Hardware-Software Approach to Flexible Transactional
Memory. In Proceedings of the 34th International Symposium on
Computer Architecture, San Diego, Calif., June 2007.

[32] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible Decoupled
Transactional Memory Support. In Proceedings of the 35th Inter-
national Symposium on Computer Architecture, Beijing, China, June
2008.

[33] M. Spear. Lightweight, Robust Adaptivity for Software Transactional
Memory. In Proceedings of the 22nd ACM Symposium on Parallelism
in Algorithms and Architectures, Santorini, Greece, June 2010.

[34] M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas, and M. L.
Scott. Nonblocking Transactions Without Indirection Using Alert-on-
Update. In Proceedings of the 19th ACM Symposium on Parallelism
in Algorithms and Architectures, San Diego, Calif., June 2007.

[35] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. Ordering-
Based Semantics for Software Transactional Memory. In Proceedings
of the 12th International Conference On Principles Of DIstributed
Systems, Luxor, Egypt, Dec. 2008.

[36] S. Stipic, S. Tomic, F. Zyulkyarov, A. Cristal, O. Unsal, and M. Valero.
TagTM - Accelerating STMs with Hardware Tags for Fast Meta-data

http://www-03.ibm.com/press/us/en/pressrelease/38653.wss
http://www-03.ibm.com/press/us/en/pressrelease/38653.wss

Access. In Proceedings of the 2012 Design, Automation & Test in
Europe Conference, Dresden, Germany, Mar. 2012.

[37] T. von Eicken, D. Culler, S. Goldstein, and K. E. Schauser. Active
Messages: A Mechanism for Integrated Communication and Compu-
tation. In Proceedings of the 19th International Symposium on Com-
puter Architecture, Gold Coast, Australia, May 1992.

[38] G. Yalcin, O. Unsal, and A. Cristal. FaulTM: Error Detection and
Recovery Using Hardware Transactional Memory. In Proceedings of
the 2013 Design, Automation & Test in Europe Conference, Grenoble,
France, Mar. 2013.

[39] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance
evaluation of intel transactional synchronization extensions for high-
performance computing. In W. Gropp and S. Matsuoka, editors, Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, SC’13, Denver, CO, USA - November 17 - 21,
2013, pages 19:1–19:11. ACM, 2013. ISBN 978-1-4503-2378-9. .
URL http://doi.acm.org/10.1145/2503210.2503232.

[40] C. Zilles and L. Baugh. Extending Hardware Transactional Memory
to Support Non-Busy Waiting and Non-Transactional Actions. In Pro-
ceedings of the 1st ACM SIGPLAN Workshop on Languages, Com-
pilers, and Hardware Support for Transactional Computing, Ottawa,
Ont., Canada, June 2006.

http://doi.acm.org/10.1145/2503210.2503232

	Introduction
	Background: ASF
	Resurrection–Aborts with Continuation
	Handling synchronous aborts asynchronously
	Cost

	OS-transparent Transaction Suspend / Resume
	Cost

	Escape Actions from Hardware Transactions
	Hardware Cost and OS Interaction

	Multi-Location Alert-on-Update
	Privatisation-safe STM with AOU
	Hardware Dependence

	Evaluation
	Alert on Update for Privatisation-Safety
	Transaction Suspend / Resume

	Related Work
	Conclusion

