
Refined Transactional Lock Elision

Dave Dice Alex Kogan Yossi Lev
Oracle Labs

{dave.dice,alex.kogan,yossi.lev}@oracle.com

Abstract
Transactional lock elision (TLE) is a well-known technique that
exploits hardware transactional memory (HTM) to introduce con-
currency into lock-based software. It achieves that by attempting
to execute a critical section protected by a lock in an atomic hard-
ware transaction, reverting to the lock if these attempts fail. One
significant drawback of TLE is that it disables hardware specula-
tion once there is a thread running under lock. In this paper we
present two algorithms that rely on existing compiler support for
transactional programs and allow threads to speculate concurrently
on HTM along with a thread holding the lock. We demonstrate the
benefit of our algorithms over TLE with a set of micro-benchmarks
based on common fundamental data structures, and with a wide
range of workloads.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques — concurrent programming

Keywords hardware transactional memory, transactional lock eli-
sion, concurrency

1. Introduction
Transactional Lock Elision (TLE) is a well-known technique that
exploits hardware transactional memory (HTM) to introduce con-
currency into lock-based software [12]. It achieves that by attempt-
ing to execute each critical section protected by a lock in one atomic
hardware transaction. When a conflict between concurrently run-
ning transactions is detected, at least one of the transactions is
aborted; the execution of the corresponding critical section is sub-
sequently retried, either speculatively (that is, on another hardware
transaction) or pessimistically (that is, by acquiring the lock). The
main advantage of TLE is that it can be enabled at the level of
a library providing lock implementations while preserving the se-
mantics provided by the lock based synchonization, thus making
TLE readily applicable on any architecture featuring HTM. In fact,
recent Intel Haswell processors are equipped with a special Hard-
ware Lock Elision (HLE) mode that enables TLE by using new
instruction prefixes and implementing begin-fail-retry logic on the
level of hardware.

Numerous studies have shown that the TLE technique can
achieve linear scalability with the number of threads under ideal
conditions where all or most transactions succeed [8, 10, 15].
However, in realistic applications, when some operations fail to
complete on HTM (due to data conflicts, HTM capacity limits, at-
tempts to execute unsupported instructions, etc.), the performance
is negatively affected [1, 6, 8, 10, 15]. This is because in order to
ensure correctness, TLE disallows concurrent execution of specu-
lating and pessimistic threads. Thus, once there is a (pessimistic)
thread executing under the lock, all other threads have to wait for
it to release the lock before they can resume their speculative exe-
cutions. This is true even if the pessimistic and speculating threads
do not conflict over data they access.

Over the last decade, a lot of research was done in the com-
munity to allow more parallelism in cases when hardware specula-
tion fails. The dominating approach is to use software transactional
memory (STM) as a fallback instead of acquiring the lock. This
research led to numerous proposals of hybrid transactional mem-
ory (TM) systems, e.g., [3, 4, 11, 13]. These systems allow multi-
ple threads to speculate on HTM and software paths concurrently
provided they all perform necessary synchronization steps. While
the synchronization steps might be trivial for threads executing on
hardware, the steps are much more complicated for threads execut-
ing on the software path. This is because the latter are required to
coordinate access to the shared data among themselves as well as
with threads executing on hardware. This in turn may lead to poor
performance when multiple threads fail to complete their opera-
tions using HTM and switch into the software-only path.

In this paper, we aim to improve performance of TLE by taking
a middle ground between TLE and hybrid TM systems. Specifi-
cally, we allow concurrent execution of speculating threads to run
on HTM along with just one pessimistic thread holding the lock.
We argue that this limited concurrency is useful for many inter-
esting cases albeit it is much simpler than full-fledged hybrid TM
systems. The simplicity stems from the fact that the metadata used
for synchronization of concurrently running threads is updated only
by one thread running on software (and holding the lock), and is
read only by threads running on HTM. Thus, from the algorithmic
perspective, our work is much closer to standard TLE and can be
viewed as its refinement. Furthermore, the semantics provided by a
program that uses our technique is much closer to that provided by
the lock based program than to what is provided by a transactional
program that uses a hybrid TM system. For example, the order in
which stores to memory are executed in a critical section become
visible to other threads is preserved even for threads that read some
of these memory locations outside of a critical section. This allows
to use our technique with lock-based programs that may access the
same data concurrently inside and outside of a critical section —
something that is not allowed by most transactional programs that
use hybrid TM solutions (because of the STM component that usu-
ally does not support strong atomicity).

We investigate two approaches, which, like hybrid TM systems,
rely on a compiler to generate two execution paths for a critical sec-
tion, a fast (or uninstrumented) path and a slow (or instrumented)
path. Every shared data read and/or write performed on the slow
path for any given critical section is instrumented. Our two ap-
proaches differ from each other at the level of instrumentation re-
quired (one requires instrumentation of writes only, while another
requires both reads and writes to be instrumented), and the imple-
mentation of instrumentation barriers.

In our scheme, the speculating threads execute either on the fast
or the slow path (or both), while the pessimistic one always exe-
cutes on the slow path. Like in standard TLE, when a thread at-
tempts to execute a critical section, it probes the lock first, and if
it is not taken, it runs of the fast path (using HTM, after probing

available?

start HTx

run instrumented CS

commit HTx

common

TLE−specific

refined TLE−specific

start HTx

is lockyes

elide lock?
yes

acquire the lock

release the lock

no

run instrumented CSrun unmodified CS

subscribe to the lock

run unmodified CS

commit HTx

succeeded?
no

yes

finish

wait
no

Figure 1: Design scheme for TLE and refined TLE

the lock again). If this attempt fails, the thread either retries specu-
latively or acquires the lock. However, when the thread probes the
lock (before starting a hardware transaction) and realizes that it is
taken, instead of waiting for the lock as in TLE, it runs on the slow
path using HTM, concurrently with the thread holding the lock.
The (light-weight) instrumentation of the slow path is responsible
for making this concurrent execution safe. Figure 1 shows the de-
sign schemes of TLE and refined TLE. In the following sections
we describe two possible approaches to implementing the barriers
on the slow path, i.e., the functions invoked for every read or write.
One approach, called RW-TLE, requires trivial instrumentation of
writes only at the expense of allowing only hardware transactions
that do not execute any writes to complete on the slow path. An-
other approach, called FG-TLE, requires instrumentation of both
reads and writes, but allows any transaction to complete on the slow
path as long as it does not conflict with the lock-based execution.
In both cases, the lock-based execution uses an instrumented path
as well to allow detecting conflicts with threads speculating on the
slow path.

Given that our ideas rely on the instrumentation of every read
and/or write performed in the critical section, one may wonder
about their applicability and effectiveness. The issue of applica-
bility can be addressed by compilers, essentially in the way GCC
supports compilation of transactional code through its builtin libitm
library. In fact, our experiments reported in this paper are based on
extensions to the libitm library. The GCC compiler allows to pro-
duce both unmodified and instrumented paths, while the libitm li-
brary allows to specify custom functions to be run for certain events
in the execution of a transaction, such as beginning and ending a
transaction, and performing read or write. Therefore, our approach
can also be applied to transactional programs, and provide the se-
mantics as if all atomic blocks in the program are critical sections
protected by a single global lock (SGL).

With respect to the effectiveness of the proposed scheme, we
note that the refined TLE would not be helpful (or might even
be destructive) when most transactions succeed on HTM (because
the slow path would not be utilized) or when most of them fail
to lock (because the execution under the lock will take longer
due to instrumentation). Our work is motivated by workloads in
which some of the executions on HTM fail to lock, which we
believe are the workloads of interest in realistic applications. The
actual characteristics of these workloads depend on the cost of
the instrumentation and the number of threads that can execute
concurrently with a thread running under the lock without having
data conflicts among themselves and with the thread holding the

lock. As we show in Section 6, despite the lack of compiler support
for inlining of barrier functions and with a relatively small 4-
core machine featuring HTM, we are able to present significant
performance advantages of refined TLE over TLE in workloads
that include several important data structures, such as AVL trees
and skip-lists. In the future work, we plan to reduce the cost of
instrumentation via inlining and evaluate the effectiveness of our
scheme on a machine featuring HTM with larger thread counts.

2. Related Work
The original idea of TLE was presented by Rajwar and Goodman
back in 2001 [12]. However, it became practically useful only in
the last few years since the introduction of commercial architec-
tures featuring HTM, such as Intel Haswell, IBM POWER8, etc.
As shown in Figure 1, the implementation of TLE is fairly straight-
forward, and can be done at the level of a library providing lock
implementations. In a nutshell, when a thread calls a lock acqui-
sition function, a TLE implementation must decide whether the
lock should be elided, and if so, start a hardware transaction and
make sure the lock is free. When a thread decides to release the
lock, the TLE implementation much check whether the thread runs
on HTM, and if so, commit the transaction; otherwise, simply re-
lease the lock. If a hardware transaction fails for any reason, HTM
is responsible for rolling back any changes that might have been
made by the thread in that failed transaction, and the execution re-
turns to the point where the TLE implementation must decide again
whether to elide the lock (and start another hardware transaction),
or abandon speculation altogether and acquire the lock.

Very recently, several papers pointed out that the decision
whether to elide the lock and how many attempts to make on HTM
should be dynamic and based on the workload, platform and other
available speculation methods [6, 7]. We note that the question of
how many attempts to make on HTM is orthogonal to the discus-
sion in this paper. As a result, our experiments use a simple static
policy, which retries a constant (five) number of times on HTM
before reverting to lock1.

Prior work has shown that the TLE technique achieves linear
scalability when most transactions succeed in their lock elision at-
tempts [8, 10, 15]. However, when some operations fail to complete
on HTM, the scalability is severely hampered [1, 6, 8, 10, 15]. This
is because when a thread acquires the lock, TLE requires all spec-
ulating threads to stop and wait until the lock is released (see Fig-
ure 1). Recent work tries to reduce the number of failures to lock
by reducing contention between speculating threads. For instance,
Afek et al. [1] suggest to use an auxiliary lock to synchronize be-
tween transactions that fail due to data conflicts. While this idea is
helpful in workloads experiencing contention, it is not very useful
when transactions fail for other reasons, such as capacity limits or
an attempt to execute an unsupported instruction.

Another way to improve the performance of TLE is to integrate
speculative execution on hardware with that on software. This is the
idea behind hybrid TM systems, e.g., [3, 4, 11, 13]. There, when
threads fail to complete their operations on HTM, they switch to
speculative attempts on software, which can be executed concur-
rently with other threads speculating on HTM. As noted in [11],
most hybrid TM systems suffer from significant instrumentation
and synchronization overhead required to ensure safety of concur-
rent speculation on hardware and software. The work by Matveev
and Shavit in [11] builds on Hybrid NOREC [3] and presents Re-
duced NOREC that aims to reduce this overhead by introducing a
small (aka reduced) hardware transaction into the software spec-

1 As we discuss in Section 6, based on the measured performance, in our
experiments we have changed the number of retries used by the libitm
implementation from two to five.

1 write_barrier(addr, val) {
2 if (on_htm()) htm_abort();
3 write = true;
4 *addr = val;
5 }

Figure 2: The pseudo-code for write barrier in RW-TLE

ulation path. Comparing to our ideas, the Reduced NOREC has
an advantage that threads speculating on hardware may run on the
uninstrumented path even when they run concurrently with threads
speculating on software. However, the Reduced NOREC requires
that all threads speculating in hardware update a global counter
(clock), even when no threads are speculating on software2. This
might unnecessarily increase contention for threads speculating
on hardware, especially on architectures with large thread counts.
Even more importantly, the software speculation component bears
significant instrumentation overhead as it has to keep track of read
and write sets, and invalidate them every time the global clock is
advanced. Apart from significant algorithmic simplicity of the re-
fined TLE compared to Hybrid or Reduced NOREC, we believe
the former will outperform the hybrid TM alternatives in cases
where transactions fail to complete on hardware, yet the lock re-
mains uncontended (and thus hybrid TMs will not benefit from al-
lowing multiple threads to speculate using software). Based on our
experience, we believe those are realistic and interesting cases to
consider. Yet, the actual comparison of refined TLE with Hybrid
and/or Reduced NOREC is left as a part of future work.

3. RW-TLE
In this section, we present RW-TLE, a simple variant of refined
TLE that requires minimal instrumentation, but allows only read-
read parallelism while the lock is held — that is, it allows hardware
transactions that do not execute any writes to execute and commit
on the slow path as long as the thread holding the lock has not yet
executed its first write instruction. While this restriction may seem
too limiting, we note that some realistic workloads include critical
sections that do not have any writes, or that may not execute any of
their write instructions in practice. Examples of such critical sec-
tions are a look up operation in a hash table or an insert operation
in a set, which does not modify the data structure when the given
key is already present in the set.

To support RW-TLE we need to guarantee that hardware trans-
actions abort when and if a thread holding the lock executes a write,
or if the critical section executed by the hardware transaction needs
to execute a write. To achieve that, we augment the lock with a
boolean write flag. Initially, the flag is false. When a thread run-
ning under the lock performs a write, the instrumentation (write)
barrier turns the flag on. The flag is reset again to false when a
thread releases the lock. A thread starting on the slow path using
HTM reads the value of the flag (after starting a hardware trans-
action), and aborts if it is set. Note that effectively the thread sub-
scribes to this flag so that any subsequent setting of the flag will
abort the execution of the subscribed thread. In the instrumentation
barrier for writes, the thread running on HTM simply aborts.

Figure 2 provides pseudo-code for the write barrier. We note
that this simple logic can be implemented very efficiently without

2 More precisely, the update of the global clock is required for transactions
that do writes. However, in most practical cases it is impossible to know
whether any write occurred without instrumentation. Alternatively, one may
avoid the clock update when no software transactions are running if she is
willing to pay the overhead of an indicator that provides this information.

any if-statements (and consequently, branch instructions) with a
few bitwise operations. Also, under the TSO memory model no
memory fence is required after setting the write flag, because it is
guaranteed that no other write in the critical section will be visible
to a hardware transaction before the store to the write flag will.
Furthermore, note that it is enough to set the write flag (Line 3)
only once for each critical section. Thus, the compiler may be
able to eliminate some of the write barriers by instrumenting only
the first write in a series of writes that are guaranteed to always
execute one after another. A simple step in this direction would be
instrumenting only the first write in each basic block belonging to
a critical section.

Although RW-TLE allows only read-read parallelism while a
thread is holding the lock, it is often able to significantly outper-
form the standard TLE approach, as we demonstrate in Section 6.
Part of the reason that RW-TLE is beneficial for a wide variety of
workloads, including those that always have writes, is due to the
prefetching effect. That is, even if a thread cannot complete the ex-
ecution of the critical section using a hardware transaction on the
slow path (e.g., because the execution requires a write), the par-
tial execution attempt is often sufficient to warm up the cache for
the next execution attempt on the fast path, making the latter faster
and more likely to succeed. We demonstrate this phenomenon in
Section 6.

4. FG-TLE
In this section we present the FG-TLE algorithm. Comparing to
RW-TLE, it puts less restrictions on hardware transactions that can
execute and commit while a thread is holding the lock, but requires
slightly more complex instrumentation. In particular, both reads
and writes of the critical section need to be instrumented.

4.1 Basic idea
Like most STM and some hybrid TM systems, we maintain an
array of ownership records (orecs) [4, 9] that captures information
on the addresses that are accessed by the critical section when
executed in the software path. These orecs are then used to detect
conflicts between concurrent executions of hardware transactions
and a thread holding the lock.

Unlike STM, with FG-TLE we do not need to detect conflicts
between software executions of the critical section, as there is only
one such execution at a time — by the thread that is holding
the lock. Thus, only this one thread updates orecs, and these
updates are only read within hardware transactions. This difference
significantly simplifies the solution and provides greater flexibility
in the design choices; for example, it is safe for the thread holding
the lock to refine the conflict detection granularity by resizing
the orecs array, as long as all hardware transactions that run on
the slow path read the array size. Furthermore, unlike with STM,
the execution of the critical section in the software path (by the
thread holding the lock) is guaranteed to succeed. This reduces the
overhead for that execution and shortens the time in which other
threads cannot use the fast path.

Here is a high level description of the FG-TLE algorithm:

• Threads are running on the fast path just like with TLE, check-
ing that the lock is available.

• A thread that decides to abandon the fast path acquires the lock,
and executes the critical section while recording information on
its read and write instructions in the orecs array. In particular,
prior to every read or write instruction, the thread uses some
mapping hash function to find the associated orec, and marks
it as owned for read or for write. The thread releases ownership
of all orecs once it is done executing the critical section, and
then releases the lock.

/∗∗
local seq number is the snapshot of the
epoch counter taken by each thread executing
a hardware transaction on the slow path.

The fast hash() function takes a 64bit integer
i and a number r, applies a few bitwise operations
and returns a value in the [0, r−1] range.
For our experiments we implemented a
hash function described in [14] .
∗∗∗/

1 read_barrier(addr) {
2 if (on_htm()) {
3 uint64_t index = fast_hash(addr, N);
4 if (w_orecs[index] >= local_seq_number)

htm_abort();
5 } else if (uniq_r_orecs < N) {
6 uint64_t index = fast_hash(addr, N);
7 if (r_orecs[index] < global_seq_number) {
8 r_orecs[index] = global_seq_number;
9 uniq_r_orecs++;

10 }
11 }
12 return *addr;
13 }

15 write_barrier(addr, val) {
16 if (on_htm()) {
17 uint64_t index = fast_hash(addr, N);
18 if (r_orecs[index] >= local_seq_number ||

w_orecs[index] >= local_seq_number)
htm_abort();

19 } else if (uniq_w_orecs < N) {
20 uint64_t index = fast_hash(addr, N);
21 if (w_orecs[index] < global_seq_number) {
22 r_orecs[index] = global_seq_number;
23 uniq_w_orecs++;
24 }
25 }
26 *addr = val;
27 }

Figure 3: The pseudo-code for read and write barriers in FG-TLE

• While the lock is not available, other threads can still run us-
ing hardware transactions in the slow path. There, they check
associated orecs prior to every read and write instruction, and
self-abort in case of a potential conflict (i.e., if the orec is held
for write, or if it is held for read and the hardware transaction
needs to execute a write).

4.2 Implementation
Figure 3 provides the pseudo-code for the read and write barriers
of our FG-TLE implementation described below.

In our implementation, we use two separate orecs arrays: one
to record read ownership (r orecs), and the other to record write
ownership (w orecs). The arrays are separate because otherwise
a transition of an orec between unowned and read-owned state
would unnecessarily abort all hardware transactions that read ad-
dresses that map to that orec. With two arrays, the read barrier

by a hardware transaction on the slow path checks only the write
ownership array (Line 4), while the write barrier checks both arrays
(Line 18).

Furthermore, we optimized the orecs acquisition and release
operations by using an epoch based scheme. In particular, we main-
tain a global epoch counter (global seq number), that is incre-
mented twice by the thread holding the lock: once right after ac-
quiring the lock, and once just before releasing it. Acquiring an
orec is simply done by storing in it the value of the epoch counter.
Threads that are executing on the slow path using HTM read a snap-
shot of the epoch counter before starting the hardware transaction,
and check that an orec is unowned by asserting that the epoch num-
ber stored in it is strictly smaller than that snapshot. Thus, by in-
crementing the epoch counter right before releasing the lock, the
thread that holds the lock implicitly releases the ownership of all
orecs it owns, without causing any of the hardware transactions
running in the slow path to abort.

Next, we addressed two sources of overhead in the slow path
for the thread holding the lock. First, every orec is updated at most
once in each execution of a critical section. We achieve that by
only storing a value in the orec if that value is greater than the
value already stored there. This is important because we avoid not
just an unnecessary write, but also, as we discuss later, a memory
fence that follows it. Second, we avoid the calculation of the map-
ping of an address to the appropriate orec if all orecs were al-
ready acquired by that thread. For that reason, we keep thread-local
counters, uniq r orecs and uniq w orecs, that count how many
orecs have been acquired for read and for write, respectively. Once
one of these counters reaches the total number of orecs, the corre-
sponding barrier for the thread holding the lock becomes trivial.

Finally, note that under the TSO memory model, it is guaranteed
that threads speculating on the slow path will always see the effect
of the write that acquired an orec prior to seeing any write done
by the thread holding the lock to any address associated with that
orec. Thus, there is no risk that a hardware transaction would see
the result of a partial execution of an atomic block that is executed
under the lock. Without memory fences, though, there is a risk
that a hardware transaction that wrote to an address that maps to
some orec will successfully commit before noticing that this orec
was already acquired by the thread holding the lock, and thus,
would interfere with the execution of that thread. Ideally, we would
like to force a thread under the lock to execute a memory fence
instruction just before a hardware transaction is about to commit;
unfortunately, this is not supported by current hardware. As a result,
we place a store-load memory fence after every acquisition of an
orec (i.e., between Lines 8 and 9, and between Lines 22 and 23,
respectively). This is one of the reasons why avoiding writing the
same value in an orec is important for performance.

4.2.1 Adaptive FG-TLE
While in this paper we focus on evaluating FG-TLE as described
above, we note that it should not be difficult to build an adap-
tive version that either adjusts the number of orecs for a partic-
ular workload, or even disables the FG-TLE algorithm altogether
and switches to the standard TLE approach. As already mentioned,
changing the number of orecs can be trivially done while a thread
is holding the lock. The epoch numbers stored in the orecs could
be a good indicator for whether the number of orecs should be in-
creased or decreased; for example, if many orecs are never used,
we can decrease the number of orecs and by that reduce the in-
strumentation overhead for FG-TLE (as it will become more likely
that a thread executing under the lock will enjoy the optimization
where the number of orecs that it acquired equals the total number
of orecs). To switch to the standard TLE algorithm, all we need to
do is to add a flag that is initially set and is always read by hard-

ware transactions in the slow path, and then have the thread that
is holding the lock to unset this flag before it starts to execute the
critical section code without any instrumentation. Experimenting
with such adaptive variants is beyond the scope of this paper and is
subject for future work.

5. Limitations
As noted in Section 1, the refined TLE technique, just like TLE,
tries to enhance the performance of lock based programs, and thus
aims to preserve their semantics. In particular, our technique will
work correctly even with programs, which use a synchronization
pattern that accesses the same data concurrently from inside and
outside of a critical section (assuming that this synchronization
pattern is correct in the original, lock based program).

There are some unconventional lock use cases, however, where
a lock itself may be used as a barrier to synchronize between two
threads. In these cases, the synchronization between the threads is
built on the assumption that a thread cannot complete an execution
of a critical section associated with a lock that is held by another
thread, even if the critical sections of these two threads do not
conflict on any data access.

Consider the example scenario in Figure 4. Here, once Thread 2
sees that Thread 1 sets GoFlag, it uses an empty critical section to
wait for the other critical section (that set GoFlag) to end, and then
assumes that Ptr is initialized to a non-NULL value.

Using the refined TLE technique as described thus far is not safe
for implementing this kind of synchronization pattern, as the pro-
grammer cannot assume anymore that a thread will fail to execute
a critical section as long as the lock that is associated with it is held
by another thread. In particular, with refined TLE, Thread 2 may
successfully execute the empty critical section using a hardware
transaction on the slow path while the lock L is held, and may thus
see a NULL value in Ptr. This cannot happen with the standard TLE
technique since it will never allow a thread to execute successfully
a critical section associated with a lock L as long as L is held by
another thread.

We note, however, that one might still use refined TLE and cope
with these issues by applying the lazy subscription optimization [3]
on the slow path. In this optimization, the speculating thread sub-
scribes to the lock right before committing its transaction (as op-
posite to right after starting its transaction, as it is done in the
fast path). While this subscription may reduce the benefit of the
suggested TLE refinement approaches, numerous papers have sug-
gested that lazy subscription can still be very helpful [1, 2, 5, 10].
Note that while applying this technique to standard TLE is subject
to numerous pitfalls [5], applying it to RW-TLE and FG-TLE is
always safe due to the instrumentation of the slow path.

6. Performance Evaluation
We have implemented the refined TLE approaches in the libitm
library. This library is a part of the open-source GCC distribu-
tion3, and is intended to support transactional programs by provid-
ing several synchronization mechanisms, including standard TLE.
We evaluated our implementation using a set of micro-benchmarks
based on common fundamental data structures. In this paper, we
show results from experiments with AVL trees and skip-lists imple-
menting a set interface (supporting Insert, Remove and Find oper-
ations), and with skip-lists implementing a priority queue interface
(supporting Insert and RemoveMin operations). These results are
elaborated in Section 6.1 and Section 6.2, respectively.

We ran our experiments on a Haswell (Core i7-4770) 4-core
hyper-threaded machine (8 hardware threads in total) running at

3 For our evaluation, we used GCC 4.9.0.

GoFlag is initially 0
Ptr is initially null

Thread 1:
Lock(L);
GoFlag=1;
...;
Ptr = SomeNonNullValue;
Unlock(L);

Thread 2:
while GoFlag == 0; // wait for GoFlag to be set
Lock(L); Unlock(L); // empty critical section
Ptr->SomeField = 3; // expects pointer to be non−null

Figure 4: Lock usage case not supported by refined TLE.

3.40GHz and powered by Oracle Linux 7. To reduce noise from
the power management system, the machine was set up in the
performance mode (i.e, the power governor was disabled, while all
cores were brought to the highest frequency), with the turbo mode
disabled. Furthermore, before starting measurements, all threads
were set to spin for a few seconds to allow the system to warm
up.

In our experiments, we varied the number of threads between
1 and 8. All threads were synchronized to start at the same time
(after a warm-up period), and performed work for 5 seconds un-
less specified otherwise. During that time, each thread performed
operations chosen uniformly and at random according to a given
probability (e.g., 60% Find, 20% Insert and 20% Remove). The
data structure used for a particular experiment was initialized with
keys selected uniformly and at random as described in correspond-
ing sections below. The key for each operation performed by each
thread (e.g., Find in set) was also chosen uniformly and at random.
At the end, each thread reported the total number of operations it
had performed, and the total throughput was calculated. Each ex-
periment was run 5 times, and the median throughput is reported.
We note that the variance of the reported results is negligible. We
also present various performance statistics as measured for runs
that yielded the median throughput result.

We compared our implementations of RW-TLE and FG-TLE
with standard TLE and a lock-based synchronization. In the follow-
ing figures, FG TLE (X) denotes the version that uses r orecs and
w orecs of size X each. The other two synchronization techniques,
standard TLE (denoted in figures and in the following simply as
TLE) and a lock-based synchronization, are provided by libitm up
to a few modifications described next.

For fair comparison, we made the following two material mod-
ifications to the TLE implementation of libitm. When a hardware
transaction in Haswell HTM aborts, hardware provides a hint bit
whether one should retry on HTM. The original implementation
of TLE in libitm uses a policy that decides to retry on HTM only
when the hint bit is set. We found out that in many our experi-
ments, the transaction failure code returned by the hardware was
0, providing no meaningful information on the cause of the failure.
In these cases, relying on this bit (i.e., avoiding retries on HTM)
was not efficient. Therefore, we modified the TLE implementation
of libitm to discard the hint bit, which resulted in overall better
performance. We followed the same approach with RW-TLE and
FG-TLE as well. In addition, we bumped up the number of retries
on HTM before resorting to lock from two to five. We found in our
experiments that a slightly higher number of attempts had a signif-
icant positive impact on TLE results. We used the same constant

number of attempts for RW-TLE and FG-TLE. Thus, in TLE and
in both refined TLE variants, the failed hardware transaction is re-
tried up to five times before resorting to the lock, regardless of the
hint bit. Note that for RW-TLE and FG-TLE, only attempts on the
fast path are counted.

6.1 Experiments with sets
In this section, we present the results of our evaluation of two im-
plementations of the set interface, one is based on AVL trees while
another is based on skip-lists. We used sequential versions of trees
and skip-lists based on publicly available reference implementa-
tions, converting each operation into an atomic block. In both ver-
sions, the memory for nodes inserted to (removed from) the set was
allocated (deallocated, respectively) inside the atomic block. At the
beginning of each experiment, the set was initialized with keys se-
lected uniformly and at random from a given key range; the set was
initialized to contain the number of keys equal to half of the range.
Thus, by varying the key range we effectively controlled the initial
size of the set.

Figure 5 presents results for AVL tree-based sets for various
key ranges and mixes of operations as specified in captions. For in-
stance, ”8K, 60-20-20“ means that the experiment was performed
with the key range of 8K and the workload consisting of 60% Find,
20% Insert and 20% Remove operations. The results are normal-
ized with the throughput of a lock-based single-threaded execution,
representing relative speedup achieved by every approach.

As expected, the benefits of the refined TLE show up when the
workload includes update operations. This is because in read-only
cases, the vast majority of all hardware transactions succeed at the
first attempt and the lock-based path is not used. With update op-
erations, some transactions fail to the lock due to conflicts on data
they access (i.e., tree nodes that get modified). The number of con-
flicts and the benefit of refined TLE correlates positively with the
number of update operations and correlates negatively with the size
of the set. (The latter is because the smaller the set is, more con-
flicts are created on average by each update operation.) We note
that even when a workload includes only Insert and Remove op-
erations, only half of them, on average, actually update the corre-
sponding set, while the other half skip the update since they do not
find the key (in case of Remove) or since the key is already in the
set (in case of Insert).

In addition to the speedup comparison between TLE and re-
fined TLE, several observations can be drawn from the results in
Figure 5. First, FG-TLE performed slightly better with a smaller
size for orecs arrays, while the best performance was achieved by
FG-TLE(1). We used statistics collected on the number of success-
ful and failed attempts on fast and slow paths on HTM and lock,
as well as timing information about executions under the lock4,
to shed some light on this phenomenon. Figure 6 depicts some of
those statistics using as an example the experiment with the AVL
tree-based set, the key range of 8K and the workload of 60% Find
operations. Figure 6(a) shows the number of successful speculative
executions on the slow path relatively to the number of executions
under lock (that use the slow path as well) for refined TLE vari-
ants. Intuitively, the larger size of orecs arrays should allow more
threads to succeed while speculating concurrently on the slow path.
Indeed, there is a very rough correlation between the size of orecs
arrays and the statistic shown in Figure 6(a).

However, we note that the larger size of orecs also means
more overhead for executions under lock (including more memory
fences). Figure 6(b) shows the time spent by executions under lock
using various syntonization algorithms, normalized by the time

4 To reduce a probing effect, timing information was sampled randomly for
less than 1% of executions under lock, on average.

●

●

●

●

●

1

2

3

4

2 4 6 8
#Threads

S
pe

ed
up

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

Lock

RW−TLE

TLE

(a) 64K, 0-50-50

Figure 7: Skip-lists-based set throughput normalized with the
throughput of a lock-based single-threaded execution.

spent under lock using lock-based synchronization and the same
number of threads. The results for single thread runs are not shown,
as TLE variants almost never fell to lock in these cases. Here we
can see a clear correlation between the size of orecs arrays and
the incurred overhead for various FG-TLE variants. As expected,
RW-TLE that does not use orecs incurs the smallest overhead.
However, even though the barriers in RW-TLE are particularly
light-weight, an execution under the lock spends almost 3x more
time in RW-TLE compared to that in TLE. Further investigation
showed that this overhead comes mostly from the fact that GCC
does not seem to support inlining of barriers used by libitm. In the
future work, we plan to investigate this issue and drastically reduce
the overhead of RW-TLE as well as of FG-TLE.

Figure 6(c) shows the relation between the two previous statis-
tics, depicting the total number of successful executions on the slow
path on HTM divided by the time spent by executions under the
lock. In the following, we refer to this statistics as the utility mea-
sure. Figure 6(c) shows a rough negative correlation between util-
ity and the size of orecs. In particular, even though FG-TLE(1)
has lower number of successful executions on the slow HTM path
per each execution under lock comparing to, e.g., FG-TLE(256)
(as shown in Figure 6(a)), its lower overhead of executions under
the lock (as shown in Figure 6(b)) results in a higher utility value.
This explains, in part, the higher throughput results achieved by
FG-TLE(1) over other refined TLE variants, as shown in Figure 5.
Furthermore, we note that the utility measure in Figure 6(c) for
most refined TLE variants increases with the number of threads as
more threads can run in parallel on the slow path while the lock
is held. This is exactly the design goal of the refined TLE, and we
expect the utility and performance advantages of RW-TLE and FG-
TLE to grow even further on larger machines.

Our experiments with skip-lists-based sets show similar patterns
to AVL trees-based sets, however the benefit of refined TLE over
TLE is even higher. As an example, Figure 7 presents the results
achieved with skip-lists-based sets with the range of 64K and no
Find operations. We believe the higher benefit is because skip lists
generally use larger nodes (as they might have multiple next point-
ers on different levels). This means a transaction might read a larger

●

●

●

●

●

0

2

4

6

2 4 6 8
#Threads

S
pe

ed
up

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

Lock

RW−TLE

TLE

(a) 8K, 100-0-0

●

●

●

●

●

0

1

2

3

4

5

2 4 6 8
#Threads

S
pe

ed
up

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

Lock

RW−TLE

TLE

(b) 8K, 60-20-20

●

●

●

●

●

1

2

3

2 4 6 8
#Threads

S
pe

ed
up

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

Lock

RW−TLE

TLE

(c) 8K, 0-50-50

●

●

●

●

●

0

2

4

6

2 4 6 8
#Threads

S
pe

ed
up

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

Lock

RW−TLE

TLE

(d) 64K, 100-0-0

●

●

●

●

●

0

2

4

6

2 4 6 8
#Threads

S
pe

ed
up

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

Lock

RW−TLE

TLE

(e) 64K, 60-20-20

●

●

●

●

●

1

2

3

4

5

2 4 6 8
#Threads

S
pe

ed
up

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

Lock

RW−TLE

TLE

(f) 64K, 0-50-50

Figure 5: AVL tree-based set throughput normalized with the throughput of a lock-based single-threaded execution.

●

●

●

●

●

0

2

4

6

2 4 6 8
#Threads

S
lo

w
P

at
hE

xe
cs

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

RW−TLE

(a) Number of successful speculative executions
on the slow path per one execution under lock

●

●

● ●

2

4

6

8

2 4 6 8
#Threads

R
el

at
iv

eT
im

eU
nd

er
Lo

ck

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

Lock

RW−TLE

TLE

(b) Execution time under lock normalized to the
time measured for the lock-based execution with
the same number of threads

●

●

●

●

●

0

2000

4000

2 4 6 8
#Threads

S
lo

w
P

at
hE

xe
cs

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

RW−TLE

(c) Total number of successful speculative execu-
tions per time unit during which the lock was held
by a thread running on the slow path

Figure 6: Performance statistics for the AVL tree-based set, 8K key range and 60-20-20 workload.

number of cache lines, therefore having a higher chance to experi-
ence aborts due to capacity limits of HTM. Having more capacity
aborts helps refined TLE to exploit the benefits of prefetching as
failed attempts on the slow HTM path warm the cache for sub-
sequent attempts on the fast HTM path and increase the chance
for the latter to succeed. (We discuss prefetching in more detail in
the next section, as it plays even more crucial role in experiments
with priority queues.) Figures 8 (a) and 8 (b) compare the distri-
bution of HTM trials (including failed ones) made by TLE in ex-
periments with the AVL tree-based set and the skip-list-based set,
respectively, and the same workload as used in Figure 6. Support-
ing our intuition, they clearly show that the ratio of capacity aborts
is much higher for skip lists.

6.2 Experiments with priority queues
In our experiments with priority queues based on skip-lists, we used
the full range of 32bits to select random keys for queue initializa-
tion and for subsequent operations performed by the varying num-
ber of threads. Figures 9(a) and (b) present results for experiments
in which the queue is initialized with 100K and 1M keys, respec-
tively, and then threads perform Insert and RemoveMin operations
with probability 50% for each. As a result, the size of the queue is
kept roughly the same throughout the whole experiment. We note
that we allow the same key to be stored more than once in the pri-
ority queue, thus Insert operation is always successful in updating
the queue.

●

●

●

●
●

0.3

0.6

0.9

1.2

2 4 6 8
#Threads

S
pe

ed
up

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

Lock

RW−TLE

TLE

(a)

●

●

●

●

●

0.50

0.75

1.00

1.25

2 4 6 8
#Threads

S
pe

ed
up

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

Lock

RW−TLE

TLE

(b)

●

●

●

●

●

1.0

1.5

2.0

2 4 6 8
#Threads

S
pe

ed
up

SyncMethod

● FG−TLE(01)

FG−TLE(04)

FG−TLE(16)

FG−TLE(256)

Lock

RW−TLE

TLE

(c)

Figure 9: Priority queue results for 50% Insert–50% RemoveMin experiments (a) and (b), and Insert-only experiments (c). For 50-50
experiments, the queue is initialized with 100K nodes (a) and 1M nodes (b). For Insert-only experiments (c), the queue is initially empty.

0.0e+00

5.0e+07

1.0e+08

1.5e+08

1 2 4 6 8
#Threads

N
um

Tr
ia

ls

TrialType

FastHTMError.other

FastHTMError_0x8

FastHTMError_0x6

LockSucc

FastHTMSucc

(a) 8K, 60-20-20

0.0e+00

2.5e+07

5.0e+07

7.5e+07

1 2 4 6 8
#Threads

N
um

Tr
ia

ls

TrialType

FastHTMError.other

FastHTMError_0x8

FastHTMError_0x6

LockSucc

FastHTMSucc

(b) 8K, 60-20-20

Figure 8: Distribution of execution attempts for TLE with AVL
tree-based set (a) and skip-list-based set (b). FastHTMError 0x6
specifies speculative trials on the fast path that ended up with data
conflict abort, while FastHTMError 0x8 specifies capacity aborts.

Figures 9(a) and (b) show that in general, TLE and refined TLE
variants scale negatively in the evaluated data structure. This is
not surprising as the RemoveMin operation is a bottleneck that
causes many transactions to abort due to data conflicts. Yet, for
larger queues (Figure 9(b)), TLE and refined TLE variants manage
to scale for two threads and in general, speedups are substantially
higher than for smaller queues (cf. Figure 9(a)). This is because
Insert operations keep threads busy longer (as they need to search
for the insertion point in a larger list) and thus reduce contention
in RemoveMin. Besides, larger lists increase a chance that the
insertion point of an Insert operation will be further from the head
of the list, reducing the chance for contention between Insert and
RemoveMin operations.

A few interesting phenomena are presented when comparing the
performance of refined TLE with TLE in Figures 9(a) and (b). First,
for smaller queues (Figure 9(a)), FG-TLE(256) performs better
than other refined TLE alternatives. In fact, this is the only variant
that manages to beat TLE at 8 threads. This suggests that in this
workload, a lesser number of conflicts between threads speculating
on the slow path and a thread holding the lock is more beneficial
than the overhead created by a larger number of orecs used. We
note that the distribution of trials on HTM (not presented due to
lack of space) clearly shows that the number of self-aborts on the
slow path due to orecs entries being updated by the thread under
lock is significantly lower for FG-TLE(256) comparing to other
FG-TLE variants.

On the other hand, the picture is quite different for larger queues
(Figure 9(b)). There, all refined TLE variants beat TLE with more

than two threads, while the performance of FG-TLE is better with a
smaller size of orecs. The performance of RW-TLE is particularly
remarkable given that none of the transactions succeed on the slow
path (as they always perform a write). We believe this is an effect
of prefetching made by futile transactions on the slow path, helping
subsequent transactions on the fast path to succeed. This effect is
apparent in larger queues where Insert operations need to access
more cache lines, on average, and thus have a higher chance to
experience a cache miss or abort due to capacity reasons. Refined
TLE variants exploit the fact that, unlike TLE, when some thread
is holding the lock, speculation can continue on the slow path,
keeping the cache warm. This is particularly useful for RW-TLE,
whose memory footprint overhead is negligible.

To estimate the effect of prefetching, we performed another set
of experiments with only Insert operations. There, we start with an
empty queue and then threads perform 1M Insert operations with
randomly chosen keys; the operations are divided equally between
all threads. We measure the time for the last thread to complete,
and calculate throughput by dividing the total number of operations
performed (i.e., 1M) by this measured time.

Results in Figure 9(c) show that TLE and all refined TLE vari-
ants scale up to 4 threads and then degrade as the number of con-
flicts between concurrent Insert operations increases. All refined
TLE variants, including RW-TLE, beat TLE substantially with 4
threads or more, echoing the results in Figure 9(b). This gives evi-
dence that performance benefits of refined TLE in Figure 9(b) are
derived from faster Insert operations that enjoy prefetching made
by speculative attempts on the slow path. In the future work, we
aim to collect additional performance statistics to investigate fur-
ther prefetching benefits of refined TLE variants.

7. Discussion
In this paper we introduced RW-TLE and FG-TLE, two approaches
that refine TLE to improve the potential parallelism it offers. The
RW-TLE and FG-TLE algorithms allow hardware transactions to
execute a critical section on the instrumented path while a thread
is holding the lock, without bearing the cost of hybrid TM systems
that use STM as the fall-back method; in particular, RW-TLE only
requires trivial instrumentation of write instructions. The lower in-
strumentation cost of refined TLE is achieved by limiting the num-
ber of threads that can run in software only mode in the slow path
to be only one. This relieves that thread from detecting conflicts
with other threads running in software, and guarantees successful
completion of its critical section execution in a single attempt.

Initial experiments conducted using our implementation of RW-
TLE and FG-TLE in the libitm library of GCC show that both

approaches significantly improve the performance of TLE on a
range of micro-benchmarks and workloads. Interestingly, we found
that RW-TLE improved performance even in cases where it did
not complete any execution in HTM while the lock was held; the
improvement is due to the ability of RW-TLE (and FG-TLE) to
keep retrying the critical section and keep the cache warm.

In future work, we plan to experiment with an adaptive version
of our algorithms based on the description in Section 4.2.1. Also,
we note that we were able to show performance advantages of RW-
TLE and FG-TLE despite the fact that our implementation could
not benefit from inlining of read and write barriers in the slow path.
The lack of inlining is a limitation of the current implementation of
the GCC extension for transactional programs, and poses a major
drawback for algorithms with lightweight barriers like RW-TLE
and FG-TLE. In future work, we hope to demonstrate the effect of
inlining of the barriers in the slow path, and compare this improved
implementation of refined TLE with hybrid approaches that use
STM as the fallback path.

Acknowledgment: We are grateful to Virendra Marathe for
useful discussions of some of the ideas reflected in this paper.

References
[1] Y. Afek, A. Levy, and A. Morrison. Software-improved hardware lock

elision. In ACM Symposium on Principles of Distributed Computing,
PODC, pages 212–221, 2014.

[2] I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy. Improved single
global lock fallback for best-effort hardware transactional memory.
In Proceedings of 9th ACM SIGPLAN Workshop on Transactional
Computing (TRANSACT), 2014.

[3] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott,
and M. F. Spear. Hybrid NOrec: a case study in the effectiveness of
best effort hardware transactional memory. In Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, pages 39–52, 2011.

[4] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid transactional memory. In Proceedings of the Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 336–346, 2006.

[5] D. Dice, T. L. Harris, A. Kogan, Y. Lev, and M. Moir. Pitfalls of
lazy subscription. In Proceedings of 6th Workshop on the Theory of
Transactional Memory (WTTM), 2014.

[6] D. Dice, A. Kogan, Y. Lev, T. Merrifield, and M. Moir. Adaptive
integration of hardware and software lock elision techniques. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 188–197, 2014.

[7] N. Diegues and P. Romano. Self-tuning intel transactional synchro-
nization extensions. In Proceedings of the International Conference
on Autonomic Computing (ICAC), pages 209–219, 2014.

[8] N. Diegues, P. Romano, and L. Rodrigues. Virtues and limitations
of commodity hardware transactional memory. In Proceedings of the
23rd International Conference on Parallel Architectures and Compi-
lation (PACT), pages 3–14, 2014.

[9] T. Harris and K. Fraser. Language support for lightweight transactions.
In Proceedings of the ACM SIGPLAN Conference on Object-oriented
Programing, Systems, Languages, and Applications (OOPSLA), pages
388–402, 2003.

[10] A. Matveev and N. Shavit. Reduced hardware lock elision. In
Proceedings of 6th Workshop on the Theory of Transactional Memory
(WTTM), 2014.

[11] A. Matveev and N. Shavit. Reduced hardware NOREC: An opaque
obstruction-free and privatizing HyTM. In Proceedings of 9th
ACM SIGPLAN Workshop on Transactional Computing (TRANSACT),
2014.

[12] R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling
highly concurrent multithreaded execution. In Proceedings of the 34th

Annual ACM/IEEE International Symposium on Microarchitecture,
pages 294–305, 2001.

[13] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimiz-
ing hybrid transactional memory: The importance of nonspeculative
operations. In Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 53–64, 2011.

[14] T. Wang. Integer hash function. http://web.archive.org/web/
20071223173210/http://www.concentric.net/~Ttwang/
tech/inthash.htm, 2007. Accessed: 2015-02-13.

[15] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance eval-
uation of Intel R© transactional synchronization extensions for high-
performance computing. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), 2013.

http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm

	Introduction
	Related Work
	RW-TLE
	FG-TLE
	Basic idea
	Implementation
	Adaptive FG-TLE

	Limitations
	Performance Evaluation
	Experiments with sets
	Experiments with priority queues

	Discussion

